Kopplungsbeschreibung

PROFIBUS DPV0 / DPV1

für

IS1+ Feldstationen
Betriebsanleitung

Kopplungsbeschreibung PROFIBUS DP

Inhalt

Historische Entwicklung der Remote I/O Technologie bei R. STAHL .. 4

1 Systemübersicht ... 5
 1.1 Anschluss Prinzip von IS1+ Feldstationen an PROFIBUS DP ... 5
 1.2 Übertragungsstrukturen ... 6
 1.3 Zugriffsverfahren PROFIBUS DP .. 7

2 Inbetriebnahme ... 8
 2.1 Übersicht .. 8
 2.2 Projektierungsgrenzen ... 9
 2.2.1 Kompatibilität der neuen 9442 CPU 12
 2.2.2 Kompatibilität der neuen IS1+ IO-Module 13
 2.3 Systemvoraussetzungen .. 14
 2.4 Konfiguration des DP Masters ... 16
 2.5 Busaufbau ... 18
 2.6 PROFIBUS Adresse der IS1+ Feldstation 18
 2.7 Protokoll Auswahl ... 18
 2.8 Datenübertragungsraten ... 19
 2.9 Anlaufverhalten ... 19
 2.9.1 Slave wird vom Master konfiguriert: 19
 2.9.2 Master konfiguriert sich mit Daten vom Slave: 19
 2.9.3 Typischer Anlaufvorgang zwischen Klasse 1 Master (M) und Slave (S) ... 20

2.10 CPU Redundanz ... 21
 2.10.1 CPU Redundanz gemäß PNO Spezifikation 22
 2.10.1.1 Softwarevoraussetzungen .. 23
 2.10.1.2 Projektierung .. 23
 2.10.1.3 PNO Redundanz ohne Master Klasse 1 Unterstützung ... 26
 2.10.2 CPU Redundanz gemäß STAHL Spezifikation 28
 2.10.2.1 Funktionsübersicht .. 28
 2.10.2.2 Redundanzstrukturen .. 28
 2.10.2.3 Haltezeit der Ausgabemodule 30
 2.10.2.4 Verhalten des DP Masters (AS) 31
 2.10.2.5 Aktualisierung der I/O-Daten zum Anwenderprogramm ... 33

2.11 Leitungsredundanz ... 36
 2.11.1 Systemdaten Leitungsredundanz 37
 2.11.2 Einstellungen am Profbus Master 38
 2.11.3 CPM 9440 Parameter .. 38
 2.11.4 Einstellungen am Trennübertrager 9185 38
 2.11.5 Umrüstung von 9440 CPM Leitungsredundanz auf 9442 CPU Redundanz ... 38

3 Datenverkehr ... 39

3.1 Konfiguration ... 39

3.2 Parametrierung der IS1+ Feldstation sowie der IO-Module 39
 3.2.1 Übertragung der Parameter Daten 39
 3.2.2 CPU Parameter .. 40
 3.2.3 IO-Modul Parameter .. 41
 3.2.3.1 AIM / AIMH .. 41
 3.2.3.2 AUMH 9468 .. 42
 3.2.3.3 UMH 9469 Exn ... 44
 3.2.3.4 TIMR 9480 .. 46
 3.2.3.5 TIM mV 9481 .. 47
 3.2.3.6 TIM 9482 ... 48
 3.2.3.7 DIM (9470/3x im kompatiblen Mode) 49
 3.2.3.8 DIOM 9470/3x, 9471/35, 9472/35 (IS1+) 50
 3.2.3.9 AOM / AOMH 9466 .. 51
 3.2.3.10 DOM ... 52
Kopplungsbeschreibung PROFIBUS DP

3.2.4 Bitcodierung der IO-Modul Parameter .. 53
 3.2.4.1 AIM / AIMH / AUMH .. 53
 3.2.4.2 UMH 9469 .. 54
 3.2.4.3 TIMR 9480 .. 55
 3.2.4.4 TIM mV 9481 .. 56
 3.2.4.5 TIM 9482 .. 57
 3.2.4.6 DIM (9470/3x im kompatiblen Mode) ... 58
 3.2.4.7 AOM / AOMH 9466 ... 60
 3.2.4.8 DOM .. 61

3.3 Datenwertaufbau der I/O - Module ... 62
 3.3.1 I/O - Baugruppen analog .. 62
 3.3.1.1 AIM, AIMH (9460/.., 9461/.., 9462/.., 9469/..) 62
 3.3.1.2 TIM (9460/.., 9461/.., 9462/..) ... 65
 3.3.1.3 AOM, AOMH (9465/.., 9466/.., 9468/..) .. 68
 3.3.2 DIM, DIM+CF, DIOM (9470/.., 9471/.., 9472/..) 70
 3.3.3 DOM (9475/.., 9477/.., 9478/..) ... 76

3.4 Signalverhalten im Fehlerfall ... 77
 3.4.1 Verhalten der Eingabesignale im Fehlerfall ... 77
 3.4.2 Verhalten der Ausgabesignale im Fehlerfall ... 78

3.5 HART Variablen ... 79
 3.5.1 Modul Auswahl in GSD File / IS1+ DTM / IS Wizard 79
 3.5.2 Datenformat .. 80
 3.5.3 Auswahl der HART Variablen ... 80

3.6 Diagnosedaten 81
 3.6.1 Standard Diagnoseinformation bei Profibus DP ... 83
 3.6.2 Kennungsbezogene Diagnose der IS1+ Module ... 84
 3.6.3 Gerätebezogene Diagnose IS1+ Feldstation (DPV0) 85
 3.6.4 CPU Status (DPV1) .. 88
 3.6.5 Modul Status (DPV1) .. 90
 3.6.6 Redundanz Status (DPV1) ... 90
 3.6.7 IO-Modul Status (DPV1) ... 91
 3.6.8 Kanalbezogene Diagnose ... 93

3.7 Sammelalarm / Status Feldstation ... 95
 3.7.1 Steuerregister CPU ... 95
 3.7.2 Statusregister CPU ... 95

3.8 LED- und LCD- Anzeige CPM 9440 .. 96
 3.9 LED-Anzeige CPU 9442 .. 96

3.10 DPV1 Datensätze .. 97
 3.11 I&M Funktion (DPV1) .. 98

3.12 Online Verhalten der IS1+ Feldstation .. 100
 3.12.1 Parameteränderungen .. 100
 3.12.2 Konfigurationsänderungen .. 100

4 Ethernet Interface 9442 CPU ... 101
 4.1 Ethernet Netzwerk Topologie ... 101
 4.2 IP Adresseinstellung ... 101
 4.3 IS1+ Detect ... 101
 4.4 Webserver .. 102

5 APL Feldgerätebibliothek zur Anbindung an Leitsystem PCS7 104

6 Liste der Abkürzungen: .. 105

7 Versionsänderungen: ... 106

8 Support Adresse .. 107

9 Appendix A: GSD File Rev. vs. CPM 9440 Firmware Rev 108
Historische Entwicklung der Remote I/O Technologie bei R. STAHL

2000 Aus den Erfahrungen mit ICS MUX und VOS 200 entsteht ein vollkommen neues Remote I/O – IS1. Das System ist deutlich flexibler und einfacher einsetzbar, dabei leistungsfähiger und extrem Kosten sparend. Im Laufe der Jahre entwickelt sich IS1 zum Marktführer in der Zone 1 und ist bis heute weltweit im Einsatz. IS1 unterstützt offene Busprotokolle wie PROFIBUS DP oder Modbus RTU und ist in unterschiedlichen Ausführungen für Zone 1, Zone 2 und sogar Division 1 und 2 verfügbar.

2009 IS1 wird um eine neue Kommunikationsbaugruppe für Ethernet erweitert. Damit ist IS1 das erste Remote I/O System, das in der Zone 1 an einem 100 Mbit/s Ethernet arbeitet. Als Kommunikationsmedium wird Lichtwellenleiter mit der Zündschutzart „op is“ verwendet, unterstützte Protokolle sind Modbus TCP, EtherNet/IP und PROFINET.

2013 Die I/O-Ebene wird komplett modernisiert und als IS1+ auf den Markt gebracht. Die neuen multifunktionalen I/O-Module haben konfigurierbare Ein-/Ausgänge und eine innovative Diagnosefunktion, die potentielle Modul-Ausfälle bereits 12 Monate vorher meldet. IS1+ ist noch besser für extreme Umgebungsbedingungen von jetzt -40...+75 °C geeignet. Dabei sind die neuen IS1+ Module vollständig kompatibel zu ihren IS1 Vorgängern.

2018 Die neue Zone 2 Kopfbaugruppe bestehend aus CPU, Power Modul und Sockel macht IS1+ noch flexibler und vielfältiger einsetzbar. Die bisher unterstützten Protokolle PROFIBUS DP, Modbus TCP+RTU, EtherNet/IP und PROFINET werden jetzt alle von einer CPU unterstützt und sind vom Anwender auswählbar. Die neue Baugruppe hat die gleichen, vorausschauenden Diagnosefunktionen und den erweiterten Temperaturbereich von -40...75 °C wie die IS1+ Module.

Die nachfolgende Beschreibung zeigt die Systemeigenschaften des IS1+ Systems bei Ankopplung an ein Automatisierungssystem über PROFIBUS DP.
1 Systemübersicht

1.1 Anschluss Prinzip von IS1+ Feldstationen an PROFIBUS DP

Als komplett explosionsgeschützt aufgebaute Einheit wird die IS1+ Feldstation typischerweise direkt im explosionsgefährdeten Bereich (Zone 1 oder Zone 2 bzw. Division 1 oder Division 2) installiert. Eine Installation im sicheren Bereich ist ebenfalls möglich. Das obige Bild zeigt eine Zone 1 Lösung.

Die IS1+ Feldstation verfügt über mehrere Schnittstellen. Eine davon dient dem Anschluss an ein Automatisierungssystem (Prozess-Bus), die zweite Schnittstelle kann als Maintenance-Schnittstelle zur Konfiguration, Fehlerdiagnose und zur Kommunikation mit HART-Feldgeräten benutzt werden. Diese Funktionen können optional auch mittels FDT Technologie und IS1+ DTM zur Verfügung gestellt werden. Die Kommunikation erfolgt hierbei über PROFIBUS oder Service Bus DTM.

Die 9442 CPU verfügt zusätzlich über eine Ethernet Schnittstelle. Mittels Webserver sind hier Diagnose und Firmware Update Funktionen verfügbar.

Im Ex-Bereich lässt sich durch den Einsatz mehrerer IS1+ Feldstationen ein Profibus DP-Netzwerk aufbauen, das hierarchisch und topologisch direkt mit dem Profibus-Netzwerk im nicht-Ex-Bereich verbunden ist.

Für Zone 1 Installationen gilt:
Der Feldbus-Trennübertrager für den Profibus übernimmt sicherheitstechnisch bezogen auf den Explosions- schutz die Funktion einer „Barriere“ zwischen Ex- und nicht-Ex-Bereich.

Der im Ex-Bereich eingesetzte Profibus verwendet die genormte RS 485-IS Busphysik. Die IS1+ Feldstation verhält sich in einem solchen Profibus-Netzwerk hierarchisch als Profibus-Slave, die Konfiguration der Feldstation erfolgt über den Profibus-Master. Optional können über PC-gestützte Konfigurationsprogramme (IS1+ DTM über PROFIBUS DP oder IS Wizard über Servicebus) erweiterte Diagnose- und Parametrierfunktionen genutzt werden.
1.2 Übertragungsstrukturen

Bild 2 zeigt mögliche Übertragungsstrukturen mehrerer IS1+ Feldstationen in einem Profibus-Netzwerk. Die Feldstationen IS1+ lassen sich sowohl im Ex- wie im nicht-Ex-Bereich an den Profibus anschließen. Sowohl LWL-Technik als auch Bus-Strukturen in Multi-Drop-Verkabelung sind im Ex-Bereich verfügbar.
1.3 Zugriffsverfahren PROFIBUS DP

Klasse 1 Master sind Master, denen ein oder mehrere Slaves zugeordnet sind. Nur Klasse 1 Master können schreibend (Setzen der Ausgänge) und lesend (Abfragen der Eingänge) auf die ihnen zugeordneten Slave zugreifen. Klasse 2 Master ist nur ein Lesezugriff auf Slaves möglich. Es gibt pro Slave nur einen Klasse 1 Master aber es können mehrere Klasse 2 Master pro Slave vorhanden sein. In einem Netzwerk sind mehrere Klasse 1 Master möglich. Jedoch kann nur ein Klasse 1 Master auf die ihm zugeordneten Slaves schreibend zugreifen. Master können sowohl Klasse 1 Master für einen Slave sein und Klasse 2 Master für andere Slaves.

Beispiel

Master A sind die Slaves A1 und A2 als Klasse 1 Master zugeordnet. Master A hat keine Slaves als Klasse 2 Master zugeordnet.
Master B ist als Klasse 1 Master der Slave B1 zugeordnet und als Klasse 2 Master die Slaves A1 und A2.

Profibus DPV0 Dienste (Klasse 1 Master)

<table>
<thead>
<tr>
<th>Dienst</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data_Exchange</td>
<td>Zyklischer Datenaustausch mit Klasse 1 Master z.B. Automatisierungssystem und einem Slave.</td>
</tr>
<tr>
<td>RD_Inp</td>
<td>Lesen der Eingabedaten durch Klasse 2 Master, z.B. PC für Konfig. und Diagnose oder ein anderes Automatisierungssystem.</td>
</tr>
<tr>
<td>RD_Out</td>
<td>Lesen der Ausgabedaten eines Slaves durch einen Klasse 2 Master.</td>
</tr>
<tr>
<td>Slave_Diag</td>
<td>Diagnosedaten werden an den Klasse 1 Master gesandt.</td>
</tr>
<tr>
<td>Set_Prm</td>
<td>Konfigurationsdaten werden von Klasse 1 Master an den Slave (IS1) gesandt.</td>
</tr>
<tr>
<td>Chk_Cfg</td>
<td>Übertragen von Konfigurationsdaten vom Klasse 1 Master zum Slave und Überprüfung der empfangenen Konfigurationsdaten durch den Slave.</td>
</tr>
<tr>
<td>Get_Cfg</td>
<td>Klasse 2 Master liest die Konfigurationsdaten eines Slaves.</td>
</tr>
<tr>
<td>Set_Slave_Add</td>
<td>Nicht unterstützt! Die Slave-Adresse wird durch Bedientaster am 9440 CPM der IS1+ Feldstation oder über Drehschalter auf dem Sockel der 9442 CPU eingestellt.</td>
</tr>
</tbody>
</table>

Profibus DPV1 Dienste (Klasse 2 Master)

<table>
<thead>
<tr>
<th>Dienst</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initiate</td>
<td>Verbindung über azyklichen C2 Kanal öffnen</td>
</tr>
<tr>
<td>Read</td>
<td>Daten azyklich lesen</td>
</tr>
<tr>
<td>Write</td>
<td>Daten azyklich schreiben</td>
</tr>
<tr>
<td>Abort</td>
<td>Schließen der Verbindung</td>
</tr>
</tbody>
</table>
Kopplungsbeschreibung PROFIBUS DP

2 Inbetriebnahme

2.1 Übersicht

Planung des gesamten PROFIBUS Netzwerkes:
- Welche Master sind im Netz
- Welche Slaves sind im Netz
- Wahl der Netztopologie und Netzphysik (Repeater, Feldbus Trennübertrager, Glasfaserstrecken ...)
- Wahl der Baudrate abhängig von Leitungslängen, Datenmengen und Zeitanforderungen
- Eindeutige Vergabe der PROFIBUS DP Adressen.

Inbetriebnahme durchführen:
- Mechanische Montage der IS1+ Feldstation
- Mechanische Montage der Feldbus - Trennübertrager
- Mechanische Montage aller weiteren Busteilnehmer
- Busverbindungen herstellen. Auf korrekten Busabschluss aller Segmente achten!
- Baudrate an den Feldbus-Trennübertragern (9185, 9186, ...) einstellen oder Einstellung ´Auto Baudrate detection´ (nur bei 9185 und 9186) wählen.
- Spannungsversorgung der IS1+ Feldstation herstellen.
- Spannungsversorgung der Feldbus-Trennübertrager herstellen.
- Slave Adressen an den IS1+ Feldstationen einstellen
- Adressen aller weiteren Teilnehmer einstellen.
- optionale Verwendung des RS485 Service Bus:
 - Mechanische Montage des Service Bus sowie der zugehörigen Feldbus - Trennübertrager.
 - IS Wizard auf PC installieren
 - IS1+ Feldstationen konfigurieren
- optionale Verwendung der FDT Technologie:
 Diagnose und HART Kommunikation via DTM
- DP Master Parametrieren
 - GSD-Datei der IS1+ Feldstation in Konfigurator des Masters einlesen
 - Module im Master entsprechend der in der Feldstation vorhandenen IO-Module konfigurieren.
 - IS1+ Feldstation sowie deren IO-Module parametrieren.
- Kommunikation auf PROFIBUS DP prüfen mittels folgender Hilfsmittel
 - Diagnoseinformationen des Masters bzw. des dem Master zugehörigen Diagnosehilfsmittels.
 - LED’s an den Feldbus Trennübertragern 9185,9186
 - LED’s an der CPU der IS1+ Feldstation
- E/A-Signale prüfen mittels folgender Hilfsmittel
 - Informationen des Masters bzw. des dem Master zugehörigen Diagnosehilfsmittels.
 - Diagnosesoftware IS WIZARD auf einem über den Service Bus angebundenen PC.
 - IS1+ DTM bei Verwendung von FDT.
Kopplungsbeschreibung PROFIBUS DP

2.2 Projektierungsgrenzen

Für die mechanische und elektrische Projektierung einer IS1+ Feldstation gelten die allgemeinen Regeln gemäß Betriebsanleitung IS1+. Bei Verwendung der PROFIBUS Schnittstelle ergeben sich zusätzlich folgende zu beachtende Projektierungsregeln.

<table>
<thead>
<tr>
<th>IS1+ CPU</th>
<th>9440, 9442</th>
<th>9442</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose</td>
<td>DPV0 V2.xx, V3.xx</td>
<td>DPV1 V4.xx, V5.xx</td>
</tr>
<tr>
<td>Max_Input_Len [Byte]</td>
<td>240</td>
<td>244</td>
</tr>
<tr>
<td>Max_Output_Len [Byte]</td>
<td>128</td>
<td>244</td>
</tr>
<tr>
<td>Max_Diag_Data_Len [Byte]</td>
<td>122</td>
<td>244</td>
</tr>
<tr>
<td>Max Anzahl Signal Diagnosen</td>
<td>30 – 40 - 64</td>
<td></td>
</tr>
<tr>
<td>C1_READ_WRITE_SUPP</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>C2_Max_Count_Channels</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Bei Verwendung der 9442 CPU mit GSD V2.xx oder V3.xx gelten die Begrenzungen der 9440 CPM.

Länge der zyklischen CPU/CPM Daten mit GSD V2.xx und V3.xx

<table>
<thead>
<tr>
<th>Modul Auswahltext in GSD File</th>
<th>Länge zyklische Daten [Byte]</th>
<th>PROFIBUS Kennung [HEX]</th>
</tr>
</thead>
<tbody>
<tr>
<td>9440/12-01-11 CPM Z1 Stahl 24V</td>
<td>1</td>
<td>30 - - - -</td>
</tr>
<tr>
<td>9440/15-01-11 CPM Z2 Stahl 24V</td>
<td>1</td>
<td>30 - - - -</td>
</tr>
<tr>
<td>9440/22-01-11 CPM Z1 PNO 24V</td>
<td>1</td>
<td>30 - - - -</td>
</tr>
<tr>
<td>9440/22-01-21 CPM Z2 PNO 230V</td>
<td>1</td>
<td>30 - - - -</td>
</tr>
<tr>
<td>9440/.. CPM ohne zykl. Daten *1)</td>
<td>0</td>
<td>00 - - - -</td>
</tr>
</tbody>
</table>

*1) 9440/.. CPM ohne zykl. Daten -> keine CPM Redundanz unterstützt.

Länge der zyklischen 9442 CPU Daten mit GSD V4.xx und V5.xx

<table>
<thead>
<tr>
<th>Modul Auswahltext in GSD File</th>
<th>Länge zyklische Daten [Byte]</th>
<th>PROFIBUS Kennung [HEX]</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU Status-/Steuerregister *2)</td>
<td>1</td>
<td>c2 00 00 00 35</td>
</tr>
</tbody>
</table>

*2) Das CPU Status-/Steuerregister kann bei der 9442 CPU bei Bedarf optional auf einem beliebigen Steckplatz projektiert werden. Es verhält sich wie ein Leermodul und der Steckplatz muss frei bleiben. Nachfolgende IO-Module werden dadurch um eine Steckplatzadresse verschoben.

Tipp: Wird das Status-/Steuerregister als letztes Modul nach den real gesteckten IO-Modulen projektiert, bleiben die Steckplatzadressen der IO-Module unverändert.

*3) PM und EM kommen später mit neuen IOM hinzu.
Kopplungsbeschreibung PROFIBUS DP

Länge der zyklischen Daten der verschiedenen IO-Modul Typen:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9460/12-08-11 AIM 4/8 Exi</td>
<td>16 0</td>
<td>42 47 30 03</td>
<td>IS1</td>
</tr>
<tr>
<td>9461/12-08-11 AIMH 8 2w Exi</td>
<td>16 0</td>
<td>42 47 30 05</td>
<td>IS1</td>
</tr>
<tr>
<td>9461/12-08-11 AIMH 8+4HV 2w Exi</td>
<td>32 0</td>
<td>42 4f (cf1) 31 05</td>
<td>IS1</td>
</tr>
<tr>
<td>9461/12-08-11 AIMH 8+8HV 2w Exi</td>
<td>48 0</td>
<td>42 57 (df7) 32 05</td>
<td>IS1</td>
</tr>
<tr>
<td>9461/12-08-21 AIMH 8 Exi</td>
<td>16 0</td>
<td>42 47 30 06</td>
<td>IS1</td>
</tr>
<tr>
<td>9461/12-08-21 AIMH 8+4HV Exi</td>
<td>2 0</td>
<td>42 4f (cf1) 31 06</td>
<td>IS1</td>
</tr>
<tr>
<td>9461/12-08-21 AIMH 8+8HV Exi</td>
<td>48 0</td>
<td>42 57 (df7) 32 06</td>
<td>IS1</td>
</tr>
<tr>
<td>9461/15-08-12 AIMH 8 2w Exn</td>
<td>32 0</td>
<td>42 4f (cf1) 31 07</td>
<td>IS1</td>
</tr>
<tr>
<td>9461/15-08-12 AIMH 8+4HV 2w Exn</td>
<td>32 0</td>
<td>42 4f (cf1) 31 07</td>
<td>IS1</td>
</tr>
<tr>
<td>9461/15-08-12 AIMH 8+8HV 2w Exn</td>
<td>48 0</td>
<td>42 57 (df7) 32 07</td>
<td>IS1</td>
</tr>
<tr>
<td>9462/12-06-11 SAIMH6 V1 2w Exi</td>
<td>22 6</td>
<td>siehe Betriebsanleitung SAIMH</td>
<td>PROFI-safe</td>
</tr>
<tr>
<td>9462/12-06-11 SAIMH8 V1 2w Exi</td>
<td>16 4</td>
<td>siehe Betriebsanleitung SAIMH</td>
<td>PROFI-safe</td>
</tr>
<tr>
<td>9462/12-06-11 SAIMH8 V2 2w Exi</td>
<td>16 4</td>
<td>siehe Betriebsanleitung SAIMH</td>
<td>PROFI-safe</td>
</tr>
<tr>
<td>9465/12-08-11 AOM 8 Exi</td>
<td>0 16</td>
<td>82 47 40 09</td>
<td>IS1</td>
</tr>
<tr>
<td>9466/12-08-11 AOMH 8 Exi</td>
<td>0 16</td>
<td>82 47 40 06</td>
<td>IS1</td>
</tr>
<tr>
<td>9466/12-08-11 AOMH 8 +4HV Exi</td>
<td>16 16</td>
<td>c2 47 47 (c71) 41 0b</td>
<td>IS1</td>
</tr>
<tr>
<td>9466/12-08-11 AOMH 8 +8HV Exi</td>
<td>32 16</td>
<td>c2 47 4f (cf1) 42 0b</td>
<td>IS1</td>
</tr>
<tr>
<td>9466/15-08-12 AOMH 8 Exn</td>
<td>0 16</td>
<td>82 47 40 0c</td>
<td>IS1</td>
</tr>
<tr>
<td>9466/15-08-12 AOMH 8 +4HV Exn</td>
<td>16 16</td>
<td>c2 47 47 (c71) 41 0c</td>
<td>IS1</td>
</tr>
<tr>
<td>9466/15-08-12 AOMH 8 +8HV Exn</td>
<td>32 16</td>
<td>c2 47 4f (cf1) 42 0c</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAH</td>
<td>16 2</td>
<td>50 58 (db8) 77 2b</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAH/8AOH</td>
<td>18 16</td>
<td>42 50 (db0) 74 2b</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAIH +4HV</td>
<td>18 16</td>
<td>42 47 48 (c81) 75 2b</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAIH +8HV</td>
<td>34 16</td>
<td>42 47 50 (db0) 76 2b</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAIH/8AOH +4HV</td>
<td>50 0</td>
<td>42 47 50 (db0) 78 2b</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAIH/8AOH +8HV</td>
<td>34 16</td>
<td>42 47 58 (db8) 79 2b</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAIH/8AOH No Stat</td>
<td>16 0</td>
<td>42 47 30 05</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAIMH+4HV No Stat</td>
<td>32 0</td>
<td>42 cf 31 05</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAIMH+8HV No Stat</td>
<td>32 0</td>
<td>42 cf 32 05</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAOH+4HV No Stat</td>
<td>32 0</td>
<td>42 df 40 06</td>
<td>IS1</td>
</tr>
<tr>
<td>9468/3x-08-xx BAOH+8HV No Stat</td>
<td>32 0</td>
<td>42 cf 41 0b</td>
<td>IS1</td>
</tr>
<tr>
<td>9469/35-08-xx BIH Exn</td>
<td>18 2</td>
<td>42 47 40 80 32</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIS/8OHN Exn</td>
<td>14 4</td>
<td>c2 47 48 81 32</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIII+2OH Exn</td>
<td>18 16</td>
<td>c2 47 48 82 32</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIII/8OHN Exn</td>
<td>34 0</td>
<td>42 50 (d00) 84 32</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIII/4HVN Exn</td>
<td>18 16</td>
<td>42 47 48 (c81) 85 32</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIII/8OHN Exn</td>
<td>34 16</td>
<td>42 47 50 (d00) 86 32</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIII/8HVN Exn</td>
<td>50 0</td>
<td>42 58 (db8) 87 32</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIII/8HVN Exn</td>
<td>34 16</td>
<td>42 47 50 (d00) 88 32</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIII/8HVN No Stat</td>
<td>16 16</td>
<td>42 47 58 (db8) 89 32</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIIIH No Stat</td>
<td>32 0</td>
<td>42 47 30 07</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIIIH+4HV No Stat</td>
<td>32 0</td>
<td>42 4f (cf1) 31 07</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BIIIH+8HV No Stat</td>
<td>32 0</td>
<td>42 57 (df7) 32 07</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BAOH+4HV No Stat</td>
<td>32 0</td>
<td>42 4f (cf1) 31 07</td>
<td>IS1+</td>
</tr>
<tr>
<td>9469/35-08-xx BAOH+8HV No Stat</td>
<td>32 0</td>
<td>42 57 (df7) 32 07</td>
<td>IS1+</td>
</tr>
</tbody>
</table>
Kopplungsbeschreibung PROFIBUS DP

<table>
<thead>
<tr>
<th>Modellnummer</th>
<th>Beschreibung</th>
<th>Anzahl</th>
<th>IS1+</th>
<th>IS1</th>
<th>IS2+</th>
<th>IS3+</th>
</tr>
</thead>
<tbody>
<tr>
<td>9470/12-16-11</td>
<td>DIM 16 NamExi</td>
<td>4</td>
<td>0</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9470/22-16-11</td>
<td>DIM 16 NamExi</td>
<td>4</td>
<td>0</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9470/25-16-11</td>
<td>DIM 16 NamExn</td>
<td>8</td>
<td>1</td>
<td>c2</td>
<td>00</td>
<td>87</td>
</tr>
<tr>
<td>9470/25-16-12</td>
<td>DIM 16 NamExn</td>
<td>8</td>
<td>1</td>
<td>c2</td>
<td>00</td>
<td>87</td>
</tr>
<tr>
<td>9470/3x-16-xx</td>
<td>DIM 16</td>
<td>4</td>
<td>0</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9470/3x-16-xx</td>
<td>DI/DO 16</td>
<td>8</td>
<td>1</td>
<td>c2</td>
<td>00</td>
<td>87</td>
</tr>
<tr>
<td>9470/3x-16-xx</td>
<td>DI/DO 16+2CF</td>
<td>8</td>
<td>4</td>
<td>c2</td>
<td>03</td>
<td>07</td>
</tr>
<tr>
<td>9470/3x-16-xx</td>
<td>DI/DO 16+6CF</td>
<td>16</td>
<td>4</td>
<td>c2</td>
<td>03</td>
<td>06</td>
</tr>
<tr>
<td>9470/3x-16-xx</td>
<td>DI/DO 16+8CF</td>
<td>20</td>
<td>4</td>
<td>c2</td>
<td>03</td>
<td>13</td>
</tr>
<tr>
<td>9470/3x-16-xx</td>
<td>DIM 16 9470/2</td>
<td>4</td>
<td>0</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9470/3x-16-xx</td>
<td>DIM 16+2CF 9470/2</td>
<td>8</td>
<td>1</td>
<td>c2</td>
<td>00</td>
<td>87</td>
</tr>
<tr>
<td>9471/10-16-11</td>
<td>DIM 16 24V</td>
<td>4</td>
<td>0</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9471/15-16-11</td>
<td>DIM 16+2CF 24V</td>
<td>8</td>
<td>1</td>
<td>c2</td>
<td>00</td>
<td>87</td>
</tr>
<tr>
<td>9471/15-16-12</td>
<td>DIM 16+2CF 24V Exn</td>
<td>4</td>
<td>0</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9471/15-16-12</td>
<td>DIM 16+2CF 24V Exn</td>
<td>8</td>
<td>1</td>
<td>c2</td>
<td>00</td>
<td>87</td>
</tr>
<tr>
<td>9471/35-16-xx</td>
<td>DIM 16 Exn</td>
<td>4</td>
<td>0</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9471/35-16-xx</td>
<td>DI/DO 16 Exn</td>
<td>8</td>
<td>4</td>
<td>c2</td>
<td>03</td>
<td>07</td>
</tr>
<tr>
<td>9471/35-16-xx</td>
<td>DI/DO 16+2CF Exn</td>
<td>16</td>
<td>4</td>
<td>c2</td>
<td>03</td>
<td>00</td>
</tr>
<tr>
<td>9471/35-16-xx</td>
<td>DI/DO 16+6CF Exn</td>
<td>20</td>
<td>4</td>
<td>c2</td>
<td>03</td>
<td>13</td>
</tr>
<tr>
<td>9471/35-16-xx</td>
<td>DI/DO 16+8CF Exn</td>
<td>8</td>
<td>1</td>
<td>c2</td>
<td>00</td>
<td>87</td>
</tr>
<tr>
<td>9471/35-16-xx</td>
<td>DIM 16 9471/1</td>
<td>4</td>
<td>0</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9471/35-16-xx</td>
<td>DIM 16+2CF 9471/1</td>
<td>8</td>
<td>1</td>
<td>c2</td>
<td>00</td>
<td>87</td>
</tr>
<tr>
<td>9472/35-16-xx</td>
<td>DIM 16+2CF 9471/1</td>
<td>4</td>
<td>0</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9472/35-16-xx</td>
<td>DIM 16+2CF 9471/1</td>
<td>4</td>
<td>2</td>
<td>c2</td>
<td>01</td>
<td>83</td>
</tr>
<tr>
<td>9472/35-16-xx</td>
<td>DIM 16+2CF 9471/1</td>
<td>8</td>
<td>4</td>
<td>c2</td>
<td>03</td>
<td>07</td>
</tr>
<tr>
<td>9472/35-16-xx</td>
<td>DIM 16+2CF 9471/1</td>
<td>16</td>
<td>4</td>
<td>c2</td>
<td>03</td>
<td>00</td>
</tr>
<tr>
<td>9472/35-16-xx</td>
<td>DIM 16+2CF 9471/1</td>
<td>20</td>
<td>4</td>
<td>c2</td>
<td>03</td>
<td>13</td>
</tr>
<tr>
<td>9472/35-16-xx</td>
<td>DIM 16+2CF 9471/1</td>
<td>8</td>
<td>1</td>
<td>c2</td>
<td>00</td>
<td>87</td>
</tr>
<tr>
<td>9475/12-04-11</td>
<td>DOM 4 EXxI</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9475/12-04-31</td>
<td>DOM 4 EXxI</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9475/12-08-41</td>
<td>DOM 8 EXxI</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9475/12-08-51</td>
<td>DOM 8 EXxI</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9475/12-08-61</td>
<td>DOM 8 EXxI</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9475/22-04-21</td>
<td>DOM 4 OD EXxI</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9475/22-04-51</td>
<td>DOM 8 OD ExxI</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9475/22-08-61</td>
<td>DOM 8 OD ExxI</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9475/3x-04-xx</td>
<td>DOM 4</td>
<td>-</td>
<td>2</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9475/3x-04-xx</td>
<td>DOM 4 No Stat</td>
<td>-</td>
<td>2</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9475/3x-04-xx</td>
<td>DOM 8</td>
<td>-</td>
<td>2</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9475/3x-08-xx</td>
<td>DOM 8 No Stat</td>
<td>-</td>
<td>2</td>
<td>42</td>
<td>83</td>
<td>11</td>
</tr>
<tr>
<td>9476/10-08-12</td>
<td>DOM 8 Rel</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9477/12-08-12</td>
<td>DOM 8 6UV Rel Z1</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9477/12-06-12</td>
<td>DOM 8 250VRel Z1</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9477/15-08-12</td>
<td>DOM 8 Rel ZZ</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9480/12-08-51</td>
<td>DOMV9 OD EXxI</td>
<td>0</td>
<td>1</td>
<td>02</td>
<td>00</td>
<td>20</td>
</tr>
<tr>
<td>9480/12-08-11</td>
<td>TIM 8 R EXxI</td>
<td>16</td>
<td>0</td>
<td>42</td>
<td>47</td>
<td>30</td>
</tr>
<tr>
<td>9481/12-08-11</td>
<td>TIM 8 MV EXxI</td>
<td>16</td>
<td>0</td>
<td>42</td>
<td>47</td>
<td>30</td>
</tr>
<tr>
<td>9482/3x-08-xx</td>
<td>TIM 8 STIM</td>
<td>-</td>
<td>18</td>
<td>42</td>
<td>48</td>
<td>70</td>
</tr>
<tr>
<td>9482/3x-08-xx</td>
<td>TIM 8 R No Stat</td>
<td>-</td>
<td>18</td>
<td>42</td>
<td>48</td>
<td>30</td>
</tr>
<tr>
<td>9482/3x-08-xx</td>
<td>TIM 8 MV No Stat</td>
<td>-</td>
<td>18</td>
<td>42</td>
<td>48</td>
<td>30</td>
</tr>
</tbody>
</table>

*1) Kennung verwendet ab GSD V3.04

AKF: Allgemeines Kennungsnormat

SKF: Spezielles Kennungsnormat

ESKF: Erweitertes Spezielles Kennungsnormat

IS1: PROFIBUS 3.00

D: - Technische Änderungen vorbehalten

11
Kopplungsbeschreibung PROFIBUS DP

Hinweis Kompatibler Mode:
Modulbeschreiber mit ‘No Stat’, ‘9470/2’ oder ‘9471/1’ in der Profibus GSD Modulkennzeichnung verwen-
den das bisherige Format der IS1+ IO-Module ohne separate Signal Status Bits. Die neuen IS1+ IO-Module arbeiten in diesem Fall im kompatiblen Mode und emulieren bisherige IS1 IO-Module.
Die bei IS1+ IO-Modulen verwendete Status Bildung über Status Code im Datenwort bei AI Signalen steht immer zur Verfügung.

Nachteil: Bei Verwendung von IS1+ DTM oder IS Wizard ist zu beachten, dass bei der IO-Modul Projektierung in diesen Tools das kompatible ältere IS1 IO-Modul ohne Status manuell zu projektieren ist um einen konsistenten Upload der Parameter aus IS1+ aus diesen Tools zu ermöglichen.
Die ‘Scan Topology’ Funktion von FDT Frames oder die Funktion ‘Konfiguration gemäß Hardware erstellen’ von IS Wizard kann in diesem Fall nicht verwendet werden, da hier die Beschreiber der IS1+ IO-Module und nicht die Beschreiber der älteren IS1 IO-Module dem Projekt zugefügt werden. Zuordnung der kompatiblen IO-Module siehe Kompatibilität der neuen IS1+ IO-Module

Daher ist die Verwendung von Modul Beschreibern mit ‘No Stat’, ‘9470/2’ oder ‘9471/1’ in Kombination mit Anwendungen von IS1+ DTM oder IS Wizard mit o. g. Vorbehalt möglich, wird aber nicht empfohlen.

Abhängig von Typ und Anzahl der verwendeten IO-Module ergibt sich die Telegrammlänge der zyklischen Input- sowie Output Daten einer Feldstation. Die o. g. Grenzen einer Feldstation, abhängig von der verwen-
deten CPU und GSD Version, sind hier zu beachten.
Weitere Begrenzungen der Anzahl der IO-Module, der maximalen Signalzahl, der maximalen Anzahl von Slaves in einem Netzwerk ... sind weiterhin abhängig von der Leistungsfähigkeit des verwendeten DP Mas-
ters. Die Grenzen des verwendeten DP Masters sind daher bei der Projektierung ebenfalls zu beachten.

2.2.1 Kompatibilität der neuen 9442 CPU

Die 9442 CPU zusammen mit Power Modul PM 9444 sowie Sockel 9496 können die bisherige 9440/15 CPM mit Ausnahme der Leitungsredundanz vollständig kompatibel ersetzen.
Bestehende Projektierungen der 9440/15 mit GSD V2.xx oder GSD V3.xx können im PROFIBUS Master unverändert bestehen bleiben. Die Begrenzungen der Datenmengen der 9440 CPM/15 auf PROFIBUS bleiben in diesem Fall unverändert erhalten.
Sollen die erweiterten Datenlängen der 9442 CPU verwendet werden, so ist eine geänderte Projektierung mit 9442 CPU und GSD V4.xx (DPV0) oder V5.xx (DPV1) zu erstellen.
Datenlängen siehe Projektierungsgrenzen
2.2.2 Kompatibilität der neuen IS1+ IO-Module

Neue IS1+ IO-Module können in bestehenden Anlagen bisherige IS1 IO-Module vollständig funktionskompatibel ersetzen. Eine Änderung der Projektierung und der bisher verwendeten GSD Datei ist in diesem Fall nicht erforderlich.

Erkennen die IS1+ IO-Module eine zulässige Projektierung der bisherigen IS1 IO-Module, so schalten diese in einen kompatiblen Mode und verhalten sich wie das bisher projektierte IO-Modul.

Sollen Zusatzfunktionen der IS1+ IO-Module genutzt werden, welche über die Funktionen der bisherigen IO-Module hinausgehen, sind die neuen IS1+ IO-Module mittels neuer GSD Datei gemäß Ihrer neuen Typnummer zu projektieren.

Übersicht der kompatiblen IO-Module:

<table>
<thead>
<tr>
<th>IS1 IO-Modul</th>
<th>Kompatibles IS1+ IO-Modul</th>
<th>Bemerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>9460/12-08-11</td>
<td>AIM 8</td>
<td>-</td>
</tr>
<tr>
<td>9461/12-08-11</td>
<td>AIMH 8</td>
<td>-</td>
</tr>
<tr>
<td>9461/12-08-21</td>
<td>AOM 8</td>
<td>-</td>
</tr>
<tr>
<td>9465/12-08-11</td>
<td>AOMH 8</td>
<td>-</td>
</tr>
<tr>
<td>9461/15-08-12</td>
<td>AIMH 8 Exn</td>
<td>-</td>
</tr>
<tr>
<td>9466/15-08-12</td>
<td>AOMH 8 Exn</td>
<td>-</td>
</tr>
<tr>
<td>9470/22-16-11</td>
<td>DIM 16</td>
<td>-</td>
</tr>
<tr>
<td>9475/12-08-41</td>
<td>DOM 8</td>
<td>Für Low Power Ventile</td>
</tr>
<tr>
<td>9470/25-16-12</td>
<td>DIM 16 Nam Exn</td>
<td>-</td>
</tr>
<tr>
<td>9471/15-16-12</td>
<td>DIM 16 24V Exn</td>
<td>-</td>
</tr>
<tr>
<td>9471/10-16-11</td>
<td>DIM 16 24V</td>
<td>-</td>
</tr>
<tr>
<td>9475/12-04-11</td>
<td>DOM 4</td>
<td>-</td>
</tr>
<tr>
<td>9475/12-04-21</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9475/12-04-31</td>
<td>-</td>
<td>Entfällt</td>
</tr>
<tr>
<td>9475/12-08-41</td>
<td>DOM 8</td>
<td>siehe oben 9470/3x DIOM</td>
</tr>
<tr>
<td>9475/12-08-51</td>
<td>9475/32-08-52 DOM Zone 1</td>
<td>-</td>
</tr>
<tr>
<td>9475/12-08-61</td>
<td>9475/32-08-62 DOM Zone 1</td>
<td>-</td>
</tr>
<tr>
<td>9475/22-04-21</td>
<td>DOM 4 OD</td>
<td>-</td>
</tr>
<tr>
<td>9475/22-08-51</td>
<td>DOM 8 OD</td>
<td>-</td>
</tr>
<tr>
<td>9475/22-08-61</td>
<td>9475/32-08-62 DOM Zone 1</td>
<td>-</td>
</tr>
<tr>
<td>9480/12-08-11</td>
<td>TIM R</td>
<td>9482/3x-08-xx 8TIM</td>
</tr>
<tr>
<td>9481/12-08-11</td>
<td>TIM mV</td>
<td>-</td>
</tr>
</tbody>
</table>
2.3 Systemvoraussetzungen

Hardwarevoraussetzungen CPM/CPU:
- CPM 9440/12-01-11 (24V Z1 Stahl) ab Revision F
- CPM 9440/15-01-11 (24V Z2) ab Revision F
- CPM 9440/22-01-11 (24V Z1 PNO) alle Revisionen
- CPM 9440/22-01-21 (230V Z1 PNO) alle Revisionen
- CPU 9442/xx-01-11 (Z2) alle Revisionen

Softwarevoraussetzungen:

9442 CPU: Alle CPU FW Revisionen in Verbindung mit IS1 IO-Modulen ab FW 02-00 oder IS1+ IO-Module (94xx/3x…..) ab FW 03-01

Ältere IS1 IO-Module mit Firmware 01-xx können nur mit 9440 CPUs betrieben werden!

GSD File Auswahl siehe Projektierungsgrenzen

9440 CPM:

<table>
<thead>
<tr>
<th>IS1 IO-Modul</th>
<th>IO-Modul FW</th>
<th>DPV0 Betrieb ohne C2 Kommunikation</th>
<th>DPV1 Betrieb mit C2 Kommunikation</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS1 IO-Modul</td>
<td>01-xx</td>
<td>DPV0 Diagnose</td>
<td>DPV1 Diagnose</td>
</tr>
<tr>
<td>ab 02-00</td>
<td>CPM FW ab V01-32</td>
<td>GSD V2.00</td>
<td>GSD ab V2.00</td>
</tr>
<tr>
<td></td>
<td>CPM FW ab V01-41</td>
<td>GSD ab V3.00</td>
<td>GSD ab V3.00</td>
</tr>
<tr>
<td>IS1+ IO-Modul</td>
<td>ab 03-01</td>
<td>CPM FW ab V01-47</td>
<td>CPM FW ab V02-47, 03-47 oder 09-47</td>
</tr>
<tr>
<td>(94xx/3x…..)</td>
<td>GSD ab V2.32</td>
<td>GSD ab V3.10</td>
<td>GSD ab V3.10</td>
</tr>
</tbody>
</table>

Softwarevoraussetzungen für CPM Redundanz siehe: CPM Redundanz

Das IS1+ System mit PROFIBUS DPV1 unterstützt folgende zusätzlichen Funktionen:

- PROFIBUS gemäß DPV1
- Diagnose Statusmeldungen
- I&M Funktion
- Unterstützung von PROFIsafe I/O Modulen (nur 9440 CPM)
- Übertragung HART Protokoll
- Unterstützung der IS1+ DTMs (FDT) mit Kommunikation über DPV1
Kopplungsbeschreibung PROFIBUS DP

Verhalten bei Mischung mit älteren Versionsständen:

Ältere GSD Versionen sind auf CPMs/CPUs mit neueren Firmware Revisionen mit der alten, in der GSD beschriebenen Funktionalität, lauffähig. Details siehe Appendix A

Hochrüstung älterer Anlagen für DPV1 Betrieb:

- IS1+ CPU 9442 installieren oder 9440 CPM auf neuen Firmwarestand updaten (erforderliche Hardware Revision bei 9440 CPM beachten)
- Firmware Revision der bereits installierten IO-Module überprüfen
 - ab 02-00 für alle nicht PROFIsafe IS1 I/O Module
 - ab 03-00 für alle IS1+ I/O Module (94xx/3x……)
- Bei Verwendung von 9442 CPUs oder 9440 CPM Firmware ab V02-40 sowie GSD Dateien ab V3.00 werden PROFIBUS Diagnosetelegramme gemäß DPV1 verwendet. Bitte überprüfen Sie, ob dies von ihrem PROFIBUS Master unterstützt wird.

Dokumentation der IS1 PROFIBUS Versionen sowie der IS1 Parametersätze:

<table>
<thead>
<tr>
<th>PROFIBUS Diagnose</th>
<th>IS1 Parametersatz</th>
<th>GSD Datei</th>
<th>Dokumentation</th>
<th>Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPV0</td>
<td>Standard</td>
<td>Versionen V1.xx (File Name: STA_049A.gsg)</td>
<td>Dokument 'Kopplungsbeschreibung PROFIBUS DP für IS1+ Feldstationen'</td>
<td>Produkt Wartung, (Verwendung von IOM V1.xx) Nicht für neue Projekte! Von 9442 CPU nicht unterstützt.</td>
</tr>
<tr>
<td></td>
<td>Erweitert</td>
<td>Versionen V2.xx (File Name: STA2049A.gsg)</td>
<td>dieses Dokument</td>
<td>Standard Lösung für neue Projekte mit 9440 CPM</td>
</tr>
<tr>
<td>DPV1</td>
<td></td>
<td>Versionen V3.xx (File Name: STA3049A.gsg)</td>
<td></td>
<td>Neue Projekte mit DPV1 kompatiblen DP Mastern und 9440 CPM und bei Anwendungen mit PROFIsafe z. B. S7-400H S7-300F, S7-400F ...</td>
</tr>
<tr>
<td>DPV0</td>
<td></td>
<td>Versionen V4.xx (File Name: S4xx049A.GSG)</td>
<td></td>
<td>Standard Lösung für neue Projekte mit 9442 CPU</td>
</tr>
<tr>
<td>DPV1</td>
<td></td>
<td>Versionen V5.xx (File Name: S5xx049A.GSG)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kopplungsbeschreibung PROFIBUS DP

2.4 Konfiguration des DP Masters

Das exakte Vorgehen der Parametrierung Ihres Masters entnehmen Sie bitte der Dokumentation des Masters. Durch die weitgehende Normung des PROFIBUS DP erfolgt die Konfiguration des Netzwerkes auch bei Produkten unterschiedlicher Hersteller in sehr ähnlicher Form. Folgende Vorgehensweise ist üblich:

Konfigurationsregeln:

<table>
<thead>
<tr>
<th>9440 CPM mit GSD V2.xx und V3.xx</th>
<th>9442 CPU mit GSD V4.xx und V5.xx</th>
</tr>
</thead>
<tbody>
<tr>
<td>Als erstes Modul (Modul Nr. / Steckplatz = 0) ist das CPM zu konfigurieren. Auch bei Verwendung von redundanten CPM ist nur auf Steckplatz 0 ein CPM zu konfigurieren, da aus Sicht des Masters nur ein CPM je Feldstation existiert</td>
<td>Es werden nur I/O Module ab Steckplatz 1 konfiguriert. CPU Beschreiber mit zyklischen Daten wie beim 9440 CPM entfallen. Optional kann bei Bedarf einmal das Status-/Steuerregister als separates Modul projektiert werden.</td>
</tr>
<tr>
<td>Konfiguration der IO-Module steckplatzcodiert ab Steckplatz 1 (Modul Nr. 1) entsprechend der projektierten bzw. im System vorhandenen IO-Module</td>
<td></td>
</tr>
<tr>
<td>Nur Profibus Kennungen gemäß Tabelle in Kap 2.2 sind zulässig</td>
<td>Prüfung auf maximale Telegrammlängen (max. 239 (+1) Byte Input- und 127 (+1) Byte Outputdaten</td>
</tr>
<tr>
<td>Überprüfung auf maximal 16 IO-Module bei IS1+ GSD V2.xx und bis V3.02</td>
<td>Prüfung auf maximale Telegrammlängen (max. 244 Byte Input- und 244 Byte Outputdaten)</td>
</tr>
<tr>
<td>Überprüfung auf maximal 15 IO-Module bei IS1+ GSD ab V3.03 mit PNO Redundanz und strukturierter Parametrierung</td>
<td>Überprüfung auf - maximal 16 IO-Module bei GSD V4.xx - maximal 15 IO-Module bei GSD V5.xx + Status-/Steuerregister (1 x optional)</td>
</tr>
</tbody>
</table>

Die für IS1+ erforderlichen Konfigurationsdaten und Parameter werden im Anlauf vom DP Master zur IS1+ CPU übertragen.

Achtung !

Die CPU überprüft die o. g. Projektierungs- und Konfigurationsregeln.

-> Im Fehlerfall geht die CPU nicht in den Zustand „Data_Exchange“.

Im Diagnosetelegramm wird die Meldung „Konfigurationsfehler (Cfg_Fault)“ übertragen.

Sind bei der Prüfung keine Fehler aufgetreten, so akzeptiert die CPU die Konfigurationsdaten und geht in den Zustand ‚Data Exchange‘ mit dem DP Master.

Alle richtig konfigurierten Module, bzw. deren Signale, werden zyklisch bearbeitet.
Kopplungsbeschreibung PROFIBUS DP

Beispiele von Konfigurationslisten einer IS1+ Feldstation im Konfigurator verschiedener DP Master:

DPV0 mit 9440 CPU und GSD V2.xx

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0 1 Byte In/Out</td>
<td>9440/15-01-11 CPM Z2 Stahl 24V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 8 AI</td>
<td>9461/12-08-11 AIM 4/8 Exi</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2 8 AI</td>
<td>9461/12-08-11 AIM 4/8 Exi</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3 16 DI</td>
<td>9470/12-16-11 DIM 16 NamExi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Leermodul</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 8 AO</td>
<td>9466/12-08-11 AOM 8 Exi</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7 8 DO</td>
<td>9475/12-08-41 DOM 8 Exil</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8 8 AI / 8AO</td>
<td>9468/3x-08-xx 8AIH/8AOH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DPV1 mit 9440 CPU und GSD V3.xx

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1 Byte In/Out</td>
<td>9440/15-01-11 CPM Z2 Stahl 24V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 8 AI</td>
<td>9461/12-08-11 AIM 4/8 Exi</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3 8 AI</td>
<td>9461/12-08-11 AIM 4/8 Exi</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>4 16 DI</td>
<td>9470/12-16-11 DIM 16 NamExi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Leermodul</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 8 AO</td>
<td>9466/12-08-11 AOM 8 Exi</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8 8 DO</td>
<td>9475/12-08-41 DOM 8 Exil</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>9 8 AI / 8AO</td>
<td>9468/3x-08-xx 8AIH/8AOH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DPV1 mit 9442 CPU und GSD V4.xx oder V5.xx

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 8 AI</td>
<td>9461/12-08-11 AIM 4/8 Exi</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>2 8 AI</td>
<td>9461/12-08-11 AIM 4/8 Exi</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>3 16 DI</td>
<td>9470/12-16-11 DIM 16 NamExi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Leermodul</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 8 AO</td>
<td>9466/12-08-11 AOM 8 Exi</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>7 8 DO</td>
<td>9475/12-08-41 DOM 8 Exil</td>
<td></td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>8 8 AI / 8AO</td>
<td>9468/3x-08-xx 8AIH/8AOH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.5 Busaufbau

Busaufbau, Pinbelegung und Abschlusswiderstände des Ex i Segmentes sind beschrieben in der Betriebsanleitung:

2.6 PROFIBUS Adresse der IS1+ Feldstation

Für die Protokolle PROFIBUS DP, MODBUS RTU (RS485), sowie den STAHL Servicebus über USB/RS485 wird von der 9442 CPU eine gemeinsame Stationsadresse verwendet, welche über zwei Drehschalter (S2, S3) auf dem ersten IS1+ Sockel (Bank 0) einstellbar ist.

Die Schalter befinden sich unter der linken CPU. Damit ist eine versehentliche Änderung bei gesteckter CPU nicht möglich. Eine Übernahme von veränderten Schalterstellungen erfolgt immer erst nach CPU Boot.

<table>
<thead>
<tr>
<th>CPM 9440</th>
<th>CPU 9442</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einstellung mittels Bedientaster am CPM Modul</td>
<td>Einstellung mittels zwei Drehschaltern 0…9 aufSockel unter CPU in Slot 0</td>
</tr>
<tr>
<td>Einstell Bereich von 0 bis 127</td>
<td>Bereich von 0 bis 99</td>
</tr>
<tr>
<td>Empfohlener Bereich 1 bis 99</td>
<td>Empfohlener Bereich 1 bis 99</td>
</tr>
</tbody>
</table>

Es ist darauf zu achten, dass Adressen in einem PROFIBUS Netzwerk nur einmalig vergeben werden dürfen. Die eingestellte Adresse ist auch für die Adressierung der IS1+ Feldstation am Service Bus gültig (siehe auch Bedienungsanleitung der CPU).

2.7 Protokoll Auswahl

Das zu verwendende AS Protokoll wird bei der 9442 CPU per Drehschalter S1 im Sockel fest gewählt. Damit bleibt die AS Protokoll Auswahl und Adresse bei CPU Tausch erhalten. Nach Veränderungen der Protokoll Auswahl sind zum Protokoll passende Konfigurations- und Parameter Daten zu erstellen und in die IS1+ Feldstation zu laden.

<table>
<thead>
<tr>
<th>AS-Protokoll</th>
<th>Schalter Stellung S1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reserved</td>
<td>0</td>
</tr>
<tr>
<td>PROFIBUS PNO Red.</td>
<td>*1) 1</td>
</tr>
<tr>
<td>PROFIBUS Stahl Red. Addr. Offs. 1</td>
<td>*1) 2</td>
</tr>
<tr>
<td>PROFIBUS Stahl Red. Addr. Offs. 0</td>
<td>*1) 3</td>
</tr>
<tr>
<td>PROFINET</td>
<td>4</td>
</tr>
<tr>
<td>Reserved</td>
<td>5</td>
</tr>
<tr>
<td>Modbus TCP</td>
<td>6</td>
</tr>
<tr>
<td>EtherNet/IP</td>
<td>7</td>
</tr>
<tr>
<td>Reserved</td>
<td>8</td>
</tr>
<tr>
<td>Reserved</td>
<td>9</td>
</tr>
</tbody>
</table>

*1) Für Standard PROFIBUS ohne 9442 CPU Redundanz sind alle S1 Schalterstellungen 1 bis 3 mit identischem Verhalten verwendbar.
Kopplungsbeschreibung PROFIBUS DP

2.8 Datenübertragungsrate

Die Zentraleinheiten der IS1+ Feldstationen (CPU) sowie die Feldbus Trennübertrager 9185 und 9186 (Schalter in Stellung 'AutoBaud detection') verfügen über eine automatische Erkennung der Datenübertragungsrate (Baudrate) für die PROFIBUS DP Schnittstelle und stellen sich auf alle genormten PROFIBUS Baudraten ein.

Der 9440 CPM unterstützt Baudraten im Bereich 9,6 kbit/s bis 1,5 Mbit/s gemäß RS485-IS Spezifikation. Die 9442 Zone 2 CPU verwendet einen Standard RS485 Bus und unterstützt Baudraten von 9,6 kbit/s bis 12 Mbit/s.

2.9 Anlaufverhalten

Das Anlaufverhalten der zyklischen Kommunikation zwischen einem Klasse 1 Master und einem DP Slave ist genormt und wird vom Master automatisch abgewickelt. Während des Anlaufvorganges tauschen Master und Slave Informationen über Datenblocklänge, Aufbau der Datenblöcke (Aufteilung in Module), Parameter, Watchdogzustand aus.

Es können zwei verschiedene Hochlaufverhalten von Klasse 1 Mastern unterschieden werden:

2.9.1 Slave wird vom Master konfiguriert:

(von Klasse 1 Mastern (AS) überwiegend verwendetes Verfahren)

Der Klasse 1 Master überträgt mittels des Dienstes "Chk_Konfig" Konfigurationsdaten zur IS1+ CPU. Diese prüft diese Daten auf Verträglichkeit. Nach erfolgreicher Überprüfung übernimmt die CPU die neuen Konfigurationsdaten und antwortet nachfolgend auf "Get_Config"-Telegramme mit den neuen Daten.

Der Slave adaptiert sich somit an die Konfiguration des Masters. Bei diesem Anlaufverfahren ist die Datenblocklänge und Modulaufteilung im Klasse 1 Master zu parametrieren. Hierfür stehen Konfigurationswerkzeuge des Masters zur Verfügung, welche auf Basis der GSD-Dateien (Geräte Spezifische Datei eines Slaves) die Konfiguration ermöglichen.

In dieser Betriebsart kann auf den Einsatz des Servicebus, sowie der PC Software IS1+ Wizard verzichtet werden. Diese Hilfsmittel sowie das HART Management System können jedoch optional verwendet werden.

2.9.2 Master konfiguriert sich mit Daten vom Slave:

(überwiegend von Klasse 2 Mastern wie Diagnose und Parametrierwerkzeugen verwendet)

Befindet sich die CPU nicht mit einem Klasse 1 Master in zyklischem Datenaustausch, so werden zum Klasse 2 Master mittels des Dienstes ‘Get_Config’ nur Leermodule gemeldet. Die real vorhandene Modulbestückung ist in diesem Zustand nicht lesbar.
Typischer Anlaufvorgang zwischen Klasse 1 Master (M) und Slave (S)

Die nachfolgende Tabelle zeigt den typischen Telegrammverkehr zischen Master und Slave beim Anlaufvorgang.

Anlaufvorgang

<table>
<thead>
<tr>
<th>M → S</th>
<th>Req. Slave Diag</th>
<th>Status_1: Not Ready</th>
</tr>
</thead>
<tbody>
<tr>
<td>M ← S</td>
<td>Res. Slave Diag</td>
<td>Status_2: PRM_REQ (Parameter request)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status_3: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>master adr. FFH</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ident number 049AH</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M → S</th>
<th>Req. Set Parameter</th>
<th>LOCK+SYNC+FREEZE+WD_ON</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WD_Factor_1: 1</td>
<td>WD_Factor_2: 10</td>
</tr>
<tr>
<td></td>
<td>min st.delay 11</td>
<td>ident number: 049AH</td>
</tr>
<tr>
<td></td>
<td>group ident 0000H</td>
<td>user prm data (variabler Datenbereich mit Parametern)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M ← S</th>
<th>Res. SC</th>
<th>(Short Confirmation)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>M → S</th>
<th>Req. Check Config</th>
<th>Beispielkonfiguration:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>57H 8 Wort Input</td>
<td>4 Module mit Input Daten</td>
</tr>
<tr>
<td></td>
<td>57H 8 Wort Input</td>
<td>3 Module mit Output Daten</td>
</tr>
<tr>
<td></td>
<td>11H 16 Bit Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11H 16 Bit Input</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67H 8 Wort Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>67H 8 Wort Output</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20H 8 Bit Output</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M ← S</th>
<th>Res. SC</th>
<th>(Short Confirmation)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>M → S</th>
<th>Req. Slave Diag</th>
<th>Status_1: OK</th>
</tr>
</thead>
<tbody>
<tr>
<td>M ← S</td>
<td>Res. Slave Diag</td>
<td>Status_2: WD_ON</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Status_3: OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>master adr. 01H</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ident number 049AH</td>
</tr>
</tbody>
</table>

Zyklischer Datenaustausch

<table>
<thead>
<tr>
<th>M → S</th>
<th>Req. Data Exchange (Output Data)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M ← S</td>
<td>Res. Data Exchange (Input Data)</td>
</tr>
</tbody>
</table>

Abkürzungen:
- Req. = Request (Anforderung)
- Res. = Response (Antwort)
- SC = Short Confirmation (Kurzquittung)
- M → S = Aufruftelegramm von Master an Slave
- M ← S = Antworttelegramm von Slave an Master
2.10 CPU Redundanz

Achtung! Es stehen zwei verschiedene Lösungen für CPU Redundanz mit PROFIBUS DP zur Verfügung:

- **CPU Redundanz gemäß PNO Spezifikation ´Slave Redundancy´** Doc. 2.212 R1.2 2004

Von IS1 werden beide Lösungen unterstützt. Beide Lösungen sind nicht miteinander kompatibel und sind unterschiedlich zu projizieren. Es ist daher klar zu unterscheiden, welche Variante verwendet werden soll.

Bei der 9442 CPU erfolgt die Auswahl über den Backplane Schalter S1:

- S1 = 1 PROFIBUS PNO Redundanz (empfohlen für neue Projekte)
- S1 = 2 PROFIBUS Stahl Redundanz Addr. Offs. 1
- S1 = 3 PROFIBUS Stahl Redundanz Addr. Offs. 0

Die Unterscheidung zwischen STAHL - oder PNO - Redundanz erfolgt bei den 9440 CPM über die Auswahl von CPM Firmware und zugehörigem GSD File:

<table>
<thead>
<tr>
<th>GSD</th>
<th>CPM 9440 - Redundanz</th>
<th>Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>STAHL</td>
<td>PNO</td>
</tr>
<tr>
<td>CPM Redundanz gemäß Stahl Spezifikation</td>
<td>CPM Redundanz gemäß PNO Spezifikation</td>
<td></td>
</tr>
</tbody>
</table>

GSD

- **GSD V2.xx**
 - **DPV0 Diagnose**
 - ab PROFIBUS-Firmware-Version V0x-30
 - **GSD ab V3.03**
 - **DPV1 Diagnose mit Status sowie strukturierter Parametrierung **
 - ab PROFIBUS-Firmware-Version V0x-42 (GSD V3.00 bis V3.02 ab PROFIBUS-Firmware-Version V0x-40)
 - ab GSD V2.25 für nicht PNO Slave Redundanz konforme Master
 - ab GSD V3.03 für PNO Slave Redundanz konforme Master (max. 15 IOM!)

IS1+ CPM Firmware

- **V01-42**
 - ohne C2 Kommunikation
- **V02-42**
 - ab V03-42
 - DPV0 Version (mit C2 Kommunikation, HART, DTM Support, I&M, …)
- **V09-42**
 - DPV1 Version (wie oben, aber Offset Backup Adr. = 0)

*1) Achtung! Bei Verwendung von GSD Files ab V3.03 in Verbindung mit IS1+ 9440 Firmware bis V0x-41 wird beim Anlauf von IS1+ ein Parametrierfehler gemeldet, wenn die SPS die strukturierte Parametrierung gemäß DPV1 unterstützt (z.B. S7-300 und S7-400). IS1+ geht dann nicht inDataExchange. Abhilfe: Firmware ab V0x-42 oder GSD bis 3.02 verwenden.

Maximal 15 IO-Module bei IS1+ CPM ab V3.03

In einer IS1 Feldstation ist das Mischen von 9440 CPMs mit Firmware für Stahl Redundanz und PNO Redundanz nicht zulässig. Bei redundantem Betrieb zweier CPMs gilt: In beiden CPM ist Firmware aus der gleichen Reihe (01-xx oder 02-xx oder 03-xx oder 09-xx) zu verwenden.
2.10.1 CPU Redundanz gemäß PNO Spezifikation

In der PNO Spezifikation für PROFIBUS Slave Redundanz (Doc. 2.212 R1.2) sind verschiedene Redundanzstrukturen definiert. IS1 unterstützt alle Varianten dieser Redundanzstrukturen. Master- und Slave Redundanz sind voneinander unabhängig und lassen sich optional bei allen Varianten kombinieren.

System Redundanz (SR):
- Zwei getrennte PROFIBUS Netzwerke.
- Primärer- und backup Slave haben gleiche Adressen

Funktion:
Beim Verwendung der System Redundanz kann der DP Master eine Umschaltung eines redundanten Slaves z. B. zum Test optional per Steuerbefehl (DPV1 PrmCmd) auslösen.
Beim Verwendung der Flying Redundanz werden die Adressen (Primary- und Backup Adresse) des redundanten Slaves bei einer Umschaltung getauscht.
Ein Ausfall der backup CPU wird mit der gerätespezifischen Diagnose ‘Backup Slave nicht verfügbar’ als auch über das CPU Statusregister in den zyklischen Daten der primary CPUs gemeldet.

Flying Redundancy (FR):
- Ein logisches PROFIBUS Netzwerk
- Primärer- und backup Slave haben unterschiedliche Adressen
Mögliche Ursachen für die Meldung ´Backup CPU nicht verfügbar´

- Backup CPU hat keine Verbindung zu PROFIBUS und findet keine gültige Baudrate am Bus.
- Kurzschluss oder Leitungsunterbrechung am PROFIBUS
 - Falsche Abschlusswiderstände
 - Fehler oder keine Versorgungsspannung am Feldbus Trennübertrager
- Kommunikationsstörung zwischen den beiden redundanten CPUs
- Keine Versorgungsspannung an der Backup CPU
- Hardware Fehler der Backup CPU

2.10.1.1 Softwarevoraussetzungen

Softwarevoraussetzungen für PNO Slave Redundanz konforme Master

- CPM 9440 mit Firmware DPV1 ab Version V03-42 oder
- CPU 9442 mit Protokoll Auswahl Drehschalter S1 = 1 -> PROFIBUS PNO Red.
- IO-Modul Firmware ab Version 2.00
- PROFIBUS GSD Datei V4.xx oder V5.xx mit 9442 CPU oder ab GSD Version V3.03 mit 9440 CPM

Verhalten bei Mischung mit älteren Versionsständen:

Die Verwendung von GSD V3.xx mit älteren 9440 CPM Firmware Ständen ist nicht zulässig. Bei Verwen-
dung von GSD V3.xx mit älteren CPM 9440 Firmware Ständen wird bei einem DP Slaveanlauf mit
´Parametrierfehler´ in den 6 standard Bytes des Diagnosetelegramms geantwortet.
Der IS1 CPM geht nicht in Data Exchange.

2.10.1.2 Projektierung

Um zwei CPUs einer IS1+ Feldstation gemäß PNO Slave Redundanz Spezifikation zu betreiben ist folgen-
des zu beachten:

- IS1+ CPU 9442 mit Protokoll Auswahl Schalter S1 = 1 oder CPM 9440 mit Firmware ab V03-42 ist erfor-
derlich.

PROFIBUS Anschluss IS1+ Feldstation

- Beide 9442 CPUs bzw. 9440 CPMs einer redundanten IS1+ Feldstation werden jeweils über den X1
 Anschluss an die PROFIBUS Segmente angeschlossen.
- X2 bei 9440 wird nur bei Leitungsredundanz und nicht bei PNO Redundanz verwendet.

DP Adressen redundanter CPUs

- Beide 9442 CPUs einer IS1+ Feldstation arbeiten mit der über Drehschalter S2 und S3 auf dem Sockel
 eingestellten DP Adresse.
- Beide 9440 CPMs einer redundanten IS1+ Feldstation werden auf dieselbe DP Adresse eingestellt.
- Die Backup CPU oder CPM addiert einen Offset zu dieser Adresse entsprechend dem Parameter
 ´Adress Offset backup CPU PNO Red´
Kopplungsbeschreibung PROFIBUS DP

Konfiguration des PROFIBUS Masters

- Nur eine der beiden redundanten CPUs wird im DP Master mit der primären DP Adresse konfiguriert. Der Master (PLC/DCS) verwendet nur die primäre CPU für den Austausch von I/O-Daten.
- Beachten Sie, dass auch die Backup Adresse gemäß dem Parameter ´Adresse Offset backup CPU PNO Red´ belegt wird und nicht doppelt verwendet werden darf.
- Zyklische oder azyklische Kommunikation zwischen DP Master und der Backup CPU kann optional zur Überprüfung der Backup Verbindung verwendet werden.
- Die vom DP Master zu tolerierende ´Max. Slave Umschaltzeit´ für eine stoßfreie Umschaltung ist abhängig von der Einstellung der DP Watchdog Zeit des DP Slaves sowie vom DP Master Zyklus:

Für 9440 CPM gilt:

\[
\text{Max. Slave Umschaltzeit [ms]} = \text{DP_Watchdog} + (3 \times \text{DP_Zyklus}) + 470 \text{ms}
\]

<table>
<thead>
<tr>
<th>DP Master Zyklus [ms]</th>
<th>Max. Slave Umschaltzeit in [ms]</th>
<th>Einstellung Parameter ´Haltezeit der Ausgänge´ >= [s]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wost case Zeit zwischen Unterbrechung DP Bus an primary CPU bis backup CPU wieder imDataExchange</td>
<td>DP-Watchdog [ms]</td>
</tr>
<tr>
<td></td>
<td></td>
<td>50</td>
</tr>
<tr>
<td>10</td>
<td>550</td>
<td>600</td>
</tr>
<tr>
<td>30</td>
<td>610</td>
<td>660</td>
</tr>
<tr>
<td>50</td>
<td>-</td>
<td>720</td>
</tr>
<tr>
<td>70</td>
<td>-</td>
<td>780</td>
</tr>
<tr>
<td>80</td>
<td>-</td>
<td>810</td>
</tr>
<tr>
<td>100</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>150</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

- Empfehlung bei Verwendung von Siemens SPS mit IS1+: DP Master Profil ´Universal (DP/FMS)´ verwenden.
Einstellung der CPU Parameter

- CPU Parameter 'CPU Redundant`= Ja
 Damit wird die gegenseitige Überwachung der beiden CPUs aktiviert und der erste Steckplatz rechts neben der rechten CPU wird Slot 1
- CPU Parameter 'Leitungsredundanz AS Bus`= Nein (nur bei 9440 CPM vorhanden)
 (Leitungsredundanz und der X2 Anschluss wird zusammen mit PNO Redundanz nicht verwendet)
- CPU Parameter 'Haltezeit Ausgabemodule (x 100 ms)` = 10 (Default Wert = 10 x 100 ms = 1 Sek)
 Bei großen Datenmengen am DP Bus und daraus resultierendem langsamerem DP Master Zyklus ist diese Zeit gemäß folgender Formel zu erhöhen:

 \[
 \text{Haltezeit Ausgabemodule [ms]} \geq (4 \times \text{DP Master Zyklus}) + 700\text{ms}
 \]

- CPU Parameter 'Adresse offset backup CPU PNO Red`= xx (siehe Tabelle unten)

Parameter: Adresse Offset backup CPU PNO Red

<table>
<thead>
<tr>
<th>Redundanz Struktur</th>
<th>Adressoffset Backup CPU</th>
<th>Master</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR System Redundancy</td>
<td>0</td>
<td>Offset gemäß PNO Spec. für SR z. B. S7-400H</td>
</tr>
<tr>
<td>FR Flying Redundancy</td>
<td>1</td>
<td>proprietäre Lösungen</td>
</tr>
<tr>
<td>64 *1)</td>
<td></td>
<td>Offset gemäß PNO Spec. für FR. z. B. ABB</td>
</tr>
</tbody>
</table>

*1) Die Adresse der backup CPU muss wie bei allen DP Geräten im Bereich 1 bis 127 liegen. Daher sind für die primären CPUs hier nur Adressen von 1 bis 63 zulässig.
2.10.1.3 PNO Redundanz ohne Master Klasse 1 Unterstützung

Ein Betrieb von redundanten IS1+ CPUs ist auch ohne die in der PNO Slave Redundanz Spezifikation definierte Unterstützung durch die DP Master möglich.

Topologie Beispiele FR:
Funktion:

- Das Umschaltkriterium zwischen primary- und backup CPU wird in den IS1+ CPUs gebildet. Eine Unterstützung durch Steuerbefehle vom DP Master wird nicht benötigt.
- mit unseren GSD Varianten 2.xx werden DP Master Systeme unterstützt, welche noch keine DPV1 Diagnosen unterstützen
- Ein Ausfall der backup CPU wird mit der gerätespezifischen Diagnose ‘Backup Slave nicht verfügbar’ als auch über das CPU Statusregister in den zyklischen Daten der primary CPU gemeldet.
- Aus Sicht der DP Master fällt der Slave (IS1+ CPU) während einer Umschaltung zwischen primary- und backup CPU kurz aus und kehrt nach ca. 500 ms - 800 ms bei 1,5 Mbaud (siehe Tabelle in Kapitel Projektierung) wieder in denDataExchange zurück.

- Bei Standard DP Mastern, welche einen solchen kurzzeitigen Slave Ausfall nicht tolerieren sieht die Applikationssoftware im AS diesen kurzzeitigen Slave Ausfall. Bei manchen Anlagen und bei geeigneter Auslegung der Applikationssoftware kann ein solcher Stoß tolerierbar sein. Das ist im jeweiligen Einzelprojekt zu prüfen.

- Optional ist es möglich, auf Applikationsebene im AS die Stößfreiheit der Input Signale projektspezifisch zu realisieren.

Bei Functionblock basierten Systemen kann z. B. ein proprietärer Baustein für jedes Input Signal zwischengefügt werden, welcher die Stößfreiheit realisiert:

![Diagramm][1]

[1]: #/image.png
2.10.2 CPU Redundanz gemäß STAHL Spezifikation

2.10.2.1 Funktionsübersicht

Eine IS1+ Feldstation kann mit zwei Zentraleinheiten (CPU) bestückt werden, wobei jede CPU eine eigene unabhängige PROFIBUS DP Schnittstelle besitzt.

Über den anderen (inaktiven) Übertragungsweg werden zwar auch Daten übertragen. Dies dient jedoch nur zur Verbindungsüberwachung. Die hier übertragenen Daten werden nicht verwendet.

Nur die aktive CPUwickelt den Datenverkehr zu den I/O Modulen der Feldstation ab. Die aktive CPU überwacht die inaktive CPU und versorgt diese ebenfalls mit den aktuellen Eingangsdaten.

2.10.2.2 Redundanzstrukturen

Die nachfolgenden Strukturen redundanter PROFIBUS Netzwerke werden unterstützt:

Leitungsredundanz im Ex - Bereich
redundante Übertragungseinheiten (CPU) in der IS1+ Feldstation, nicht redundanter DP Master.
Kopplungsbeschreibung PROFIBUS DP

Redundante PROFIBUS Netzwerke (redundante DP Master Baugruppen im AS)
nicht redundantes AS,
redundante Übertragungseinheiten (CPU) in der IS1+ Feldstation

Redundantes AS, Redundante PROFIBUS Netzwerke
redundante Übertragungseinheiten (CPU) in der IS1+ Feldstation
Verhalten der IS1 CPUs

Zu beiden CPUs kann ein parallel ablaufender zyklischer Datenverkehr über PROFIBUS DP aufgebaut werden (beide CPUs befinden sich im Data Exchange).

Beide CPUs einer IS1+ Feldstation sind mit den nicht redundant aufgebauten I/O-Modulen verbunden. Ein gleichzeitiger Zugriff der beiden CPUs einer IS1+ Feldstation auf die I/O-Module ist nicht zulässig. Aus diesem Grund wird nur einer der beiden CPUs durch ein Steuerregister von der Software im AS in den Zustand ´Aktiv´ geschaltet.

Die aktive CPU übernimmt den Zugriff auf die I/O-Module (lesen und schreiben). Die andere CPU befindet sich im Zustand ´Inaktiv´. Die aktive CPU aktualisiert zyklisch die Eingabedaten in der inaktiven CPU und überwacht diese auf Funktion.

Eingabedaten können damit im störungsfreien Betrieb von beiden CPUs zyklisch gelesen werden. Die Daten zwischen der aktiven und inaktiven CPU können im Fehlerfall jedoch unterschiedlich sein. Die Daten der inaktiven CPU sollten daher nicht für applikative Zwecke verwendet werden.

Ausgabedaten vom Automatisierungssystem werden im Zustand ´Inaktiv´ zwar über den PROFIBUS empfangen und im RAM der CPU abgespeichert, jedoch nicht zu den Ausgabemodulen weitergeleitet.

Steuer- und Statusregister CPU

Die Auswahl, welche CPU aktiviert wird, erfolgt durch eine Logik im AS. Die Aktivierung einer der beiden CPUs einer redundanten IS1+ Feldstation erfolgt durch das Schreiben eines Steuerregisters vom Automatisierungssystem zu beiden CPUs. Der ausgewählte (aktive) CPU ist permanent (zyklisch) mit dem jeweiligen Steuercode anzusteueern. Hierdurch wird ein automatischer Wiederanlauf nach Störungen sichergestellt. Das Steuerregister für die Redundanzumschaltung ist mit identischem Inhalt zu beiden CPU (prim. und red.) zu aktualisieren.

Aufbau des Steuerregisters siehe Steuerregister CPU. Über das Statusregister CPU kann der aktuelle Zustand der beiden redundanten CPUs zurückgelesen werden.

2.10.2.3 Haltezeit der Ausgabemodule

Hieraus ergibt sich folgende Anforderung für eine stoßfreie Umschaltung:

Parametrierregel für die Haltezeit der Ausgabemodule (T_MOD):

{T_MOD} ist größer als die maximale Gesamtzeit zwischen dem Auftreten eines Übertragungsfehlers und der Aktivierung der bisher inaktiven CPU (Umschaltzeit) zu parametrieren.

Die maximale Umschaltzeit wird im Wesentlichen bestimmt durch den parametrierten Buszyklus des DP Masters, die Baudrate des PROFIBUS, der Zykluszeit der Überwachungssoftware im Automatisierungssystem sowie der Verzögerung beim Start einer CPU (< 500 ms)

Die Haltezeit der Ausgabemodule (T_MOD) von IS1+ ist im DP Master parametrierbar im Bereich 100 ms bis 25,5 Sek. (Defaultwert: 100 ms).
Kopplungsbeschreibung PROFIBUS DP

Verzögerung beim Start einer CPU:

Wird eine CPU über das Steuerregister von inaktiv nach aktiv geschaltet, so dauert es maximal 500 ms bis sich die CPU über das Statusregister als aktiv zurückmeldet. Liegen gültige Inputdaten in der CPU vor, so werden diese innerhalb dieser Zeit zum AS übertragen. Das AS kann in diesem Fall sofort auf Umschaltungen auf die Inputdaten der neu gestarteten CPU zugreifen.

Hat die neu gestartete CPU jedoch geänderte Konfigurationsdaten erhalten, so dass die Input-Daten der bisher aktiven CPU nicht verwendet werden können, so müssen alle IO-Module von der neu gestarteten CPU initialisiert werden. In diesem Fall liegen erst wieder gültige Inputdaten in der CPU vor wenn sich diese aktiv meldet. Vom AS dürfen deshalb die Inputdaten welche vor der aktiv Meldung der CPU übertragen werden nicht verwendet werden (Status der aktiven CPU in AS zur Steuerung der Datenübernahme auswerten).

2.10.2.4 Verhalten des DP Masters (AS)

Konfiguration und Parametrierung der redundanten IS1+ Feldstation im DP Master.

Das übergeordnete Automatisierungssystem sieht zwei DP Slave-Geräte am PROFIBUS

<table>
<thead>
<tr>
<th>CPM 9440 Firmware Rev.</th>
<th>CPU 9442 Protokoll Auswahl (Sockel Schalter S1)</th>
<th>linke CPU</th>
<th>rechte CPU</th>
<th>Offset Adresse rechte CPU</th>
<th>Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>V01-xx, V02-xx</td>
<td>S1 = 2 PROFIBUS Stahl Red. Addr. Offs. 1</td>
<td>Adresse n</td>
<td>Adresse n+1</td>
<td>+1</td>
<td>Standard</td>
</tr>
<tr>
<td>V09-xx</td>
<td>S1 = 3 PROFIBUS Stahl Red. Addr. Offs. 0</td>
<td>Adresse n</td>
<td>Adresse n</td>
<td>0</td>
<td>nur bei Bedarf</td>
</tr>
</tbody>
</table>

Beide Slave-Geräte sind im Konfigurator des DP-Masters separat, mit identischer I/O-Bestückung zu konfigurieren sowie mit identischen Slave-Parametern zu parametrieren.

(Empfehlung: linken Slave konfigurieren und parametrieren und anschließend kopieren auf zweiten (rechten) Slave.

Für jede der beiden CPUs existiert im Master somit ein eigener Speicherbereich mit den jeweils zugehörigen I/O-Daten. Bei den CPU Parametern ist im Konfigurator des DP Masters der Parameter ´CPU redundant = Yes´ einzustellen. Bei der Konfiguration einer redundanten Feldstation ist als erstes Modul (Modul Nr. / Steckplatz = 0) das CPM mit dem Zusatz ´Red.´ zu konfigurieren (z.B. ´9440/..-. CPM Zone 1 Red´)

Die CPU verwendet 1 Byte Eingangsdaten (Statusregister) und 1 Byte Ausgangsdaten (Steuerregister), welche im zyklischen Datenbereich von PROFIBUS DP übertragen werden. Diese Register dienen zur Steuerung und Überwachung der Redundanz durch das AS.

Auch bei Verwendung von redundanten CPU ist je Feldstation nur eine CPU auf Steckplatz 0 zu konfigurieren, da aus Sicht des Masters zwei Slaves mit jeweils einer CPU existieren.

Softwarefunktionen im AS

Im Automatisierungssystem (AS) sind folgende Softwarefunktionen erforderlich:
- Aktualisierung der I/O-Daten zum Anwenderprogramm.
- Umschaltslogik und Steuerung der Redundanz

Die im Automatisierungssystem benötigten Softwareteile für die Redundanzunterstützung sind bei allen beschriebenen Redundanzstrukturen nahezu identisch.
Umschaltlogik und Steuerung der Redundanz im AS

Die Überprüfung der redundanten Übertragungswege durch das Automatisierungssystem erfolgt durch Abwicklung und Auswertung des PROFIBUS - Dienstes ‘Read Slave Diagnose’. Im ersten Byte des empfangenen Diagnosetelegrammes wird in Bit Nr. 0 zurückgegeben, ob sich der angesehene PROFIBUS Slave im zyklischen Datenaustausch befindet oder nicht.

Nach Anwendung dieses Dienstes auf beide CPU kann durch eine Logik im AS einer der Übertragungswege (eine der beiden CPU) gewählt werden, welche aktiv geschaltet werden soll. Durch Übertragung des Steuerregisters vom AS zu den CPUs wird das Ergebnis dieser Entscheidung den CPUs mitgeteilt, welche entsprechend reagieren.

Umschaltlogik im AS zur Steuerung der Redundanzumschaltung:

![Diagramm der Umschaltlogik](image)
Kopplungsbeschreibung PROFIBUS DP

2.10.2.5 Aktualisierung der I/O-Daten zum Anwenderprogramm

Für die I/O-Daten der Applikation existiert im AS ein dritter Speicherbereich. Dieser Speicherbereich der Applikation muss per Anwenderprogramm zyklisch mit dem Speicherbereich der aktiven CPU aktualisiert werden.

Der Speicherbereich für Ausgabedaten der inaktiven CPU muss nicht zyklisch aktualisiert werden. Es ist jedoch darauf zu achten, dass bei einer Redundanzumschaltung der Steuerbefehl zur Aktivierung sowie aktuelle Ausgabedaten im selben DP Zyklus der bisher inaktiven CPU übertragen werden.

Beispiel 1: Nicht redundantes Automatisierungssystem mit redundanter IS1+ Feldstation
Beispiel 2: Automatisierungssystem mit redundantem PROFIBUS interface
Kopplungsbeschreibung PROFIBUS DP

Logik zur Steuerung der Datenaktualisierung im AS:

Initialisierung des Datenbereiches der Applikation

Lineker CPU Aktiv?

Ja

Rechter CPU Aktiv?

Ja

Austausch Datenbereich Applikation mit Datenbereich CPU Links

Nein

Nein

Austausch Datenbereich Applikation mit Datenbereich CPU Rechts

Totalausfall Kopplung Projektabhängige Reaktion der Applikation

Steuerrüster in Datenbereich CPU Links und CPU Rechts eintragen
2.11 Leitungsredundanz

Leitungsredundanz kann mit 9440 CPM zur Erhöhung der Verfügbarkeit des IS1+ Systems bei Unterbrechung eines Übertragungskanals verwendet werden. Leitungsredundanz soll nicht in Kombination mit CPM Redundanz gemäß PNO Spezifikation oder CPM Redundanz gemäß Stahl Spezifikation verwendet werden.

Leitungsredundanz wird von der 9442 CPU nicht mehr unterstützt – siehe hierzu „Umrüstung von 9440 CPM Leitungsredundanz auf 9442 CPU Redundanz“

Geräte mit Unterstützung der Leitungsredundanz:

<table>
<thead>
<tr>
<th>Zone</th>
<th>Typ</th>
<th>Hilfsenergie</th>
<th>Protokoll</th>
<th>ab Revision</th>
<th>Schnittstelle</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9440/22-01-11</td>
<td>24 V DC</td>
<td>Profibus A</td>
<td>01-32, 02-32</td>
<td>X1 / X2</td>
</tr>
<tr>
<td>1</td>
<td>9440/22-01-21</td>
<td>90-250 V AC</td>
<td>Profibus B</td>
<td>01-32, 02-32</td>
<td>X1 / X2</td>
</tr>
<tr>
<td>2</td>
<td>9440/15-01-11</td>
<td>24 V DC</td>
<td>Profibus G</td>
<td>01-32, 02-32</td>
<td>X1 / X2</td>
</tr>
<tr>
<td>1 (Bus)</td>
<td>9185/11-35-10</td>
<td>24 V DC</td>
<td>D</td>
<td>01-02</td>
<td>X3 / X2</td>
</tr>
<tr>
<td>2</td>
<td>9185/12-45-10</td>
<td>24 V DC</td>
<td>D</td>
<td>01-02</td>
<td>X3 / X2</td>
</tr>
</tbody>
</table>

Beispiel mit Zone 2 CPMs 9440
2.11.1 Systemdaten Leitungsredundanz

Protokoll: Profibus DP
Baudraten: 9,6 K; 19,2 K; 93,75 K; 187,5 K; 500 K; 1,5 M

Busstruktur:

- CPM ohne Leitungsredundanz
- CPM mit Leitungsredundanz
- maximal 2 Repeater 9185 in Reihe zulässig
- DP Slave am nicht redundanten Bus
- gemischter Betrieb CPM + DP Slave ohne Leitungsredundanz

Busdaten:
- An einem redundanten Busstrang können CPM mit und ohne redundantem Busanschluss betrieben werden.
- Anzahl Busteilnehmer pro Strang ≤ 32
- Maximal können 2 Repeater 9185 pro Busstrang in Reihe geschaltet werden. ③
- Leitungslängen pro Bussegment gemäß PNO Standard
- Betrieb von beliebigen Profibus Slaves am nicht redundanten Strang und am redundanten Strang zulässig (④ und ⑤). Bei Betrieb am redundanten Strang ⑤ muss im Profibus Master $T_{addr-min} \geq 33$ t-bit parametriert sein!
2.11.2 Einstellungen am Profibus Master

<table>
<thead>
<tr>
<th>Protokoll</th>
<th>Profibus DP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retry</td>
<td>≥ 3 – 5 (empfohlen 5)</td>
</tr>
<tr>
<td>MinTsdr</td>
<td>≥ 33 t-bit bei Betrieb eines beliebigen Slave am redundanten Bus</td>
</tr>
<tr>
<td>MaxTsdr</td>
<td>≥ 33 t-bit bei Betrieb eines beliebigen Slave am redundanten Bus</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Baudrate</th>
<th>MaxTsdr</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 187,5 kBaud</td>
<td>> 80 TBit</td>
</tr>
<tr>
<td>500 kBaud</td>
<td>> 120 TBit</td>
</tr>
<tr>
<td>1,5 MBaud</td>
<td>> 170 TBit</td>
</tr>
</tbody>
</table>

Hinweis: Bei Siemens ist ein benutzerdefiniertes Profil ähnlich dem Profil „Universell (DP / FMS)” bei Baudraten ≥ 93,75 kBaud zu empfehlen.

2.11.3 CPM 9440 Parameter

Der CPM-Parameter „IS1+ Leitungsredundanz“ muss für alle IS1+ Feldstationen an redundanten Bussegmenten auf „ON“ gestellt werden.

2.11.4 Einstellungen am Trennübertrager 9185

Baudrate: - Autobaudrate
- feste Baudrate 1,5 Mbit, 500 kBit, 187,5 kBit, 93,75 kBit
 (Die festen Baudraten 9,6…57,6 kBit sind bei Leitungsredundanz nicht zulässig.)

Trennübertrager Typen: 9185/11-35-10 (RS485IS in Zone 1)
9185/12-45-10 (Standard PROFIBUS in Zone 2)
Revision: ab Rev. D, V01-02

2.11.5 Umrüstung von 9440 CPM Leitungsredundanz auf 9442 CPU Redundanz

3 Datenverkehr

3.1 Konfiguration

Eingangsdaten (Read) und Ausgangsdaten (Write) werden jeweils in einem Telegramm zyklisch übertragen. Hierbei werden die Datenblöcke der einzelnen Module in der im Konfigurator des PROFIBUS Masters definierten Reihenfolge zu Telegrammen zusammengefasst.

Werden Leermodule konfiguriert, so werden an diesen Stellen im Datentelegramm keine Daten transportiert sowie für den zugehörigen Steckplatz keine Diagnosedaten generiert.

3.2 Parametrierung der IS1+ Feldstation sowie der IO-Module

3.2.1 Übertragung der Parameter Daten

Beim Hochlauf des Automatisierungssystems werden im Telegramm "Set Parameter" Parametrierverdaten vom DP Klasse 1 Master zur CPU übertragen. Zusätzlich zu dem genormten Teil dieses Telegrammes wird der optionale Datenbereich "USER_PRM_DATA" mit übertragen. Der für eine IS1+ Feldstation verwendete Datenbereich besitzt eine feste Länge von 3 Byte DPV1 Status + 7 Byte (10 Byte mit GSD V5.xx) für die CPU sowie zusätzlich 14 Byte (erweiterter Parametersatz) für jedes IO-Modul.

Datenbereich Anwenderparameter ("USER_PRM_DATA") :

| 00 | 01 | 00 | 00 | 00 | 0x | 01 | 01 | xx |...
|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|----|

3 Byte DPV1 Status + 7 Byte
(3 Byte DPV1 Stat + 3 Byte Block H. + 7 Byte bei GSD V5.xx)
Parameter für CPU

14 Byte für IO-Modul 1 14 Byte für IO-Modul 2 IO-Modul n

Die CPU überprüft die Länge der Parameterdaten und lehnt bei falscher Länge die Parameterdaten ab. Die CPU geht im Fehlerfall nicht in den Zustand „Data Exchange“. Im Diagnosetelegramm wird die Meldung „Prm_Fault“ übertragen.
3.2.2 CPU Parameter

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Default Wert</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-</td>
<td>0x00</td>
<td>DPV1 Status Bytes</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0x01</td>
<td>(0x00 bei DPV0) Dateninhalt abhängig von verwendeten DPV1 Funktionen gemäß DPV1 Spec.</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>0x00</td>
<td>3 Byte Block header</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0x0a</td>
<td>(nur bei GSD V5.xx verwendet)</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0x81</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>0x00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Default Wert</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0x00</td>
<td>128 FR Bit 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0x00</td>
<td>0 SR Bit 0</td>
</tr>
<tr>
<td></td>
<td>2 - 7</td>
<td>0</td>
<td>Reserviert</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>0x00</td>
<td>Reserviert</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>0x00</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>0x01</td>
<td>DPV0 mit standard Parametersatz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x02</td>
<td>DPV0 mit erweitertem Parametersatz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x03</td>
<td>DPV1 mit erweitertem Parametersatz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x04</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x05</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>0x0a</td>
<td>Haltezeit Ausgabemodule (x 100 ms)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x00</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Default Wert</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>0</td>
<td>0x01</td>
<td>Kanaalbez. Diagnose</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>PM Redundant</td>
</tr>
<tr>
<td></td>
<td>2 - 3</td>
<td></td>
<td>Reserviert</td>
</tr>
<tr>
<td>4</td>
<td>-</td>
<td>0x01</td>
<td>Steckplatz Offset DPV1 Diagnose</td>
</tr>
<tr>
<td>5</td>
<td>-</td>
<td>0x01</td>
<td>IO-Modul 9-16 an Rail X4</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>0x01</td>
<td>Leitungsredundanz AS Bus</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>0x00</td>
<td>CPU Redundanz</td>
</tr>
</tbody>
</table>

*1) Nur mit GSD V3.xx und 5.xx: Bei Parameter `Steckplatz Offset DPV1 Diagnose` = 1 wird im DPV1 Diagnosetelegramm die Steckplatz Information im Modulstatus und IO-Modul Status um 1 inkrementiert.

Anwendung:

DPV1 Master Systeme, welche ab Steckplatz 1 und nicht wie bei IS1+ üblich ab Steckplatz 0 projektieren (z. B. Siemens S7). Verfügbar ab 9440 CPM Firmware Rev. 03-45 und GSD V3.05

*2) nur bei CPM 9440 und GSD V2.xx und V3.xx verwendet
*3) nur bei CPU 9442 mit PM 9445 verwendet
3.2.3 IO-Modul Parameter

3.2.3.1 AIM / AIMH

(SAIMH siehe Betriebsanleitung SAIMH 9462/... PROFIsafe)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Input Filter</td>
<td>mittel</td>
<td>Klein / mittel / groß (50 Hz) / groß (60 Hz)</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 0</td>
<td>Status Code</td>
<td>-10 % (nur 4 mA) / 0 %</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 1</td>
<td>Status Code</td>
<td>100 %</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 2</td>
<td>Status Code</td>
<td>Halten (Initialwert 0%) / Halten (Initialwert 100%)</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 3</td>
<td>Status Code</td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 4</td>
<td>Status Code</td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 5</td>
<td>Status Code</td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 6</td>
<td>Status Code</td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 7</td>
<td>Status Code</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 0</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 1</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 2</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 3</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 4</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 5</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 6</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 7</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Eingangsbereich E 0</td>
<td>4…20 mA</td>
<td>0…20 mA</td>
</tr>
<tr>
<td>Eingangsbereich E 1</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Eingangsbereich E 2</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Eingangsbereich E 3</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Eingangsbereich E 4</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Eingangsbereich E 5</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Eingangsbereich E 6</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Eingangsbereich E 7</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 0</td>
<td>Nein</td>
<td>Nein / Ja</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 1</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 2</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 3</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 4</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 5</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 6</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 7</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>Scan HART Livelist</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 1</td>
<td>Nicht verwendet</td>
<td>0…7 ‘Nicht verwendet’</td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 2</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 3</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 4</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 5</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 6</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 7</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 8</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 1</td>
<td>HART Variable Nr. 1</td>
<td>HART Variable Nr. 1</td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 2</td>
<td>HART Variable Nr. 2</td>
<td>HART Variable Nr. 2</td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 3</td>
<td>HART Variable Nr. 3</td>
<td>HART Variable Nr. 2</td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 4</td>
<td>HART Variable Nr. 4</td>
<td>HART Variable Nr. 2</td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 5</td>
<td>HART Variable Nr. 5</td>
<td>HART Variable Nr. 2</td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 6</td>
<td>HART Variable Nr. 6</td>
<td>HART Variable Nr. 2</td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 7</td>
<td>HART Variable Nr. 7</td>
<td>HART Variable Nr. 2</td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 8</td>
<td>HART Variable Nr. 8</td>
<td>HART Variable Nr. 2</td>
</tr>
</tbody>
</table>

Default Werte in 'fett'

Nur bei HART Modulen (AIMH) verfügbar!
3.2.3.2 AUMH 9468

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus/Ein</td>
</tr>
<tr>
<td>Signal Filter</td>
<td>mittel</td>
<td>Klein mittel groß (50 Hz) groß (60 Hz)</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 0</td>
<td>AI Status Code / AO 0%</td>
<td>-10 % (nur 4 mA) 0 % 100 %</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 1</td>
<td>AI Status Code / AO 0%</td>
<td>Al Status Code / AO 0%</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 2</td>
<td>AI Status Code / AO 0%</td>
<td>Al Status Code / AO 0%</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 3</td>
<td>AI Status Code / AO 0%</td>
<td>Al Status Code / AO 0%</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 4</td>
<td>AI Status Code / AO 0%</td>
<td>Al Status Code / AO 0%</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 5</td>
<td>AI Status Code / AO 0%</td>
<td>Al Status Code / AO 0%</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 6</td>
<td>AI Status Code / AO 0%</td>
<td>Al Status Code / AO 0%</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 7</td>
<td>AI Status Code / AO 0%</td>
<td>Al Status Code / AO 0%</td>
</tr>
<tr>
<td>Fehlerüberwachung S 0</td>
<td>Ein</td>
<td>Aus/Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung S 1</td>
<td>Ein</td>
<td>Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung S 2</td>
<td>Ein</td>
<td>Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung S 3</td>
<td>Ein</td>
<td>Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung S 4</td>
<td>Ein</td>
<td>Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung S 5</td>
<td>Ein</td>
<td>Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung S 6</td>
<td>Ein</td>
<td>Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung S 7</td>
<td>Ein</td>
<td>Ein</td>
</tr>
<tr>
<td>Signal Bereich S 0</td>
<td>4…20 mA</td>
<td>0…20 mA 4…20 mA</td>
</tr>
<tr>
<td>Signal Bereich S 1</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Signal Bereich S 2</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Signal Bereich S 3</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Signal Bereich S 4</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Signal Bereich S 5</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Signal Bereich S 6</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Signal Bereich S 7</td>
<td>4…20 mA</td>
<td>4…20 mA</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 0</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 1</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 2</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 3</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 4</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 5</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 6</td>
<td>Nein</td>
<td>Nein</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR E 7</td>
<td>Nein</td>
<td>Nein</td>
</tr>
</tbody>
</table>

*1) Die Parameter ‘Messber. grenzen gem. NAMUR’ gelten nur für Input Signale!
Besi umschaltbaren AI/OO Signalen ist der Parameter aber immer sichtbar und bei AO workingslos!

<table>
<thead>
<tr>
<th>Signaltyp S0</th>
<th>Analog Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signaltyp S1</td>
<td>Analog Input</td>
</tr>
<tr>
<td>Signaltyp S2</td>
<td>Analog Input</td>
</tr>
<tr>
<td>Signaltyp S3</td>
<td>Analog Output</td>
</tr>
<tr>
<td>Signaltyp S4</td>
<td>Analog Input</td>
</tr>
<tr>
<td>Signaltyp S5</td>
<td>Analog Output</td>
</tr>
<tr>
<td>Signaltyp S6</td>
<td>Analog Input</td>
</tr>
<tr>
<td>Signaltyp S7</td>
<td>Analog Output</td>
</tr>
</tbody>
</table>

*2) Der Parameter ‘Signaltyp Sx’ wird nur bei AI/OO umschaltbaren Kanälen in den Betriebsarten 9468/3x-08-xx 8AIH/8AOH (+4HV / +8HV) zur Verfügung gestellt.
Kopplungsbeschreibung PROFIBUS DP

<table>
<thead>
<tr>
<th>Scan HART Livelist</th>
<th>Ein</th>
<th>Aus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kanal Nr. HART Gerät für Pos. 1</td>
<td>Nicht verwendet</td>
<td>0...7</td>
</tr>
<tr>
<td>Kanal Nr. HART Gerät für Pos. 2</td>
<td>Nicht verwendet</td>
<td>‘Nicht verwendet’</td>
</tr>
<tr>
<td>Kanal Nr. HART Gerät für Pos. 3</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Kanal Nr. HART Gerät für Pos. 4</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Kanal Nr. HART Gerät für Pos. 5</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Kanal Nr. HART Gerät für Pos. 6</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Kanal Nr. HART Gerät für Pos. 7</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Kanal Nr. HART Gerät für Pos. 8</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>HART Variable für Pos. 1</td>
<td>HART Variable Nr. 2</td>
<td>HART Variable Nr. 1</td>
</tr>
<tr>
<td>HART Variable für Pos. 2</td>
<td>HART Variable Nr. 2</td>
<td>HART Variable Nr. 2</td>
</tr>
<tr>
<td>HART Variable für Pos. 3</td>
<td>HART Variable Nr. 2</td>
<td>HART Variable Nr. 2</td>
</tr>
<tr>
<td>HART Variable für Pos. 4</td>
<td>HART Variable Nr. 2</td>
<td>HART Variable Nr. 2</td>
</tr>
<tr>
<td>HART Variable für Pos. 5</td>
<td>HART Variable Nr. 2</td>
<td>HART Variable Nr. 3</td>
</tr>
<tr>
<td>HART Variable für Pos. 6</td>
<td>HART Variable Nr. 2</td>
<td>HART Variable Nr. 4</td>
</tr>
<tr>
<td>HART Variable für Pos. 7</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
<tr>
<td>HART Variable für Pos. 8</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
</tbody>
</table>

Nur bei Betriebsarten mit HV verfügbar!
Kopplungsbeschreibung PROFIBUS DP

3.2.3.3 UMH 9469 Exn

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Signal Filter</td>
<td>mittel</td>
<td>Klein / mittel / groß (50 Hz) / groß (60 Hz)</td>
</tr>
<tr>
<td>DI Impulsverlängerung 1,2 s</td>
<td>Aus</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Messber. grenzen gem. NAMUR</td>
<td>Nein</td>
<td>Nein / *1) Ja</td>
</tr>
<tr>
<td>Signal Bereich</td>
<td>4-20 mA</td>
<td>0-20 mA / 4-20 mA</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 0</td>
<td>AI Status Code / AO 0% / 0</td>
<td>-10 % (nur 4 mA) / 0</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 1</td>
<td>AI Status Code / AO 0% / 0</td>
<td>0 % / 0</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 2</td>
<td>AI Status Code / AO 0% / 0</td>
<td>100 % / 1</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 3</td>
<td>AI Status Code / AO 0% / 0</td>
<td>AI Status Code / AO110 % / 1</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 4</td>
<td>AI Status Code / AO 0% / 0</td>
<td>Halten (Initialwert 0% / 0)</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 5</td>
<td>AI Status Code / AO 0% / 0</td>
<td>Halten (Initialwert 100% / 1)</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 6</td>
<td>AI Status Code / AO 0% / 0</td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 7</td>
<td>AI Status Code / AO 0% / 0</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 0</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 1</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 2</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 3</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 4</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 5</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 6</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 7</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Signal Art S0</td>
<td>2 Leiter analog</td>
<td></td>
</tr>
<tr>
<td>Signal Art S1</td>
<td>2 Leiter analog</td>
<td></td>
</tr>
<tr>
<td>Signal Art S2</td>
<td>2 Leiter analog</td>
<td></td>
</tr>
<tr>
<td>Signal Art S3</td>
<td>2 Leiter analog</td>
<td></td>
</tr>
<tr>
<td>Signal Art S4</td>
<td>2 Leiter analog</td>
<td></td>
</tr>
<tr>
<td>Signal Art S5</td>
<td>2 Leiter analog</td>
<td></td>
</tr>
<tr>
<td>Signal Art S6</td>
<td>2 Leiter analog</td>
<td></td>
</tr>
<tr>
<td>Signal Art S7</td>
<td>2 Leiter analog</td>
<td></td>
</tr>
<tr>
<td>Signaltyp S0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scan HART Livelist

<table>
<thead>
<tr>
<th>Kanal Nr. HART Gerät für Pos. 1</th>
<th>Ein</th>
<th>Nicht verwendet</th>
</tr>
</thead>
<tbody>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Kanal Nr. HART Gerät für Pos. 8</td>
<td>Ein</td>
<td>Nicht verwendet</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>HART Variable für Pos. 1</td>
<td>HART Variable Nr. 2</td>
<td>HART Variable Nr. 1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>HART Variable für Pos. 8</td>
<td>HART Variable Nr. 2</td>
<td>HART Variable Nr. 3</td>
</tr>
</tbody>
</table>

* Nur bei Betriebsarten mit HV verfügbar!
Parameter Abhängigkeiten / Wirkung

<table>
<thead>
<tr>
<th>Schaltungsart</th>
<th>Signal Typ</th>
<th>Signal Art</th>
<th>Signal Bereich</th>
<th>Fehler-überwachung</th>
<th>Messber. grenzen gem. NAMUR</th>
<th>Verhalten im Fehlerfall</th>
<th>Input Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2- Leiter 0/4-20 mA Eingang</td>
<td>Input</td>
<td>2 Leiter analog</td>
<td>0-20 / 4-20</td>
<td>Ja / Nein</td>
<td>-</td>
<td>-</td>
<td>Klein mittel groß (50 Hz) groß (60 Hz)</td>
</tr>
<tr>
<td>2/3- Leiter Initiator Eingang</td>
<td>Input</td>
<td>2/3 Leiter digital</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3/4- Leiter 0/4-20 mA Eingang</td>
<td>Input</td>
<td>3/4 Leiter analog (nur Input)</td>
<td>0-20 / 4-20</td>
<td>Ja / Nein</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2- Leiter 0/4-20 mA Ausgang</td>
<td>Output</td>
<td>2 Leiter analog</td>
<td>0-20 / 4-20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Digitaler Ausgang</td>
<td>Output</td>
<td>2/3 Leiter digital</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*1) Die Parameter ´Messber. grenzen gem. NAMUR´ wirken nur bei analogen Input Signalen! Bei umschaltbaren AI/AO/DI/DO Signalen ist der Parameter immer sichtbar und bei AO, DI und DO wirkungslos!

*2) Der Parameter ´Signal Typ´ wird nur bei umschaltbaren Kanälen in den Betriebsarten mit 8I + 8O zur Verfügung gestellt.
Kopplungsbeschreibung PROFIBUS DP

3.2.3.4 TIMR 9480

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Wertebereich / Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Input Filter</td>
<td>50 Hz</td>
<td>50 Hz / 60 Hz / Aus (nicht empfohlen)</td>
</tr>
<tr>
<td>Betriebsart</td>
<td>8 Eingänge</td>
<td>8 Eingänge / 2 Eingänge</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 0 Status Code</td>
<td></td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 1 Status Code</td>
<td></td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 2 Status Code</td>
<td></td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 3 Status Code</td>
<td></td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 4 Status Code</td>
<td></td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 5 Status Code</td>
<td></td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 6 Status Code</td>
<td></td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 7 Status Code</td>
<td></td>
<td>Status Code</td>
</tr>
<tr>
<td>Fehlerüberwachung E 0</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 1</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 2</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 3</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 4</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 5</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 6</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 7</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Typ E 0</td>
<td>Pt 100</td>
<td>Pt100 / Pt50 / Pt1000 / Ni100 / Ni500 / Ni1000 / Widerstand 10k / Widerstand 5k / Widerstand 2k5 / Widerstand 500R / ab Fw. V02-04</td>
</tr>
<tr>
<td>Typ E 1</td>
<td>Pt 100</td>
<td>Pt100 / Pt50 / Pt1000 / Ni100 / Ni500 / Ni1000 / Widerstand 10k / Widerstand 5k / Widerstand 2k5 / Widerstand 500R / M50 GOST / M100 GOST / Cu53 GOST / ab Fw. V02-05</td>
</tr>
<tr>
<td>Typ E 2</td>
<td>Pt 100</td>
<td>Pt100 / Pt50 / Pt1000 / Ni100 / Ni500 / Ni1000 / Widerstand 10k / Widerstand 5k / Widerstand 2k5 / Widerstand 500R / ab Fw. V02-04</td>
</tr>
<tr>
<td>Typ E 3</td>
<td>Pt 100</td>
<td>Pt100 / Pt50 / Pt1000 / Ni100 / Ni500 / Ni1000 / Widerstand 10k / Widerstand 5k / Widerstand 2k5 / Widerstand 500R / ab Fw. V02-05</td>
</tr>
<tr>
<td>Typ E 4</td>
<td>Pt 100</td>
<td>Pt100 / Pt50 / Pt1000 / Ni100 / Ni500 / Ni1000 / Widerstand 10k / Widerstand 5k / Widerstand 2k5 / Widerstand 500R / ab Fw. V02-04</td>
</tr>
<tr>
<td>Typ E 5</td>
<td>Pt 100</td>
<td>Pt100 / Pt50 / Pt1000 / Ni100 / Ni500 / Ni1000 / Widerstand 10k / Widerstand 5k / Widerstand 2k5 / Widerstand 500R / ab Fw. V02-05</td>
</tr>
<tr>
<td>Typ E 6</td>
<td>Pt 100</td>
<td>Pt100 / Pt50 / Pt1000 / Ni100 / Ni500 / Ni1000 / Widerstand 10k / Widerstand 5k / Widerstand 2k5 / Widerstand 500R / ab Fw. V02-05</td>
</tr>
<tr>
<td>Typ E 7</td>
<td>Pt 100</td>
<td>Pt100 / Pt50 / Pt1000 / Ni100 / Ni500 / Ni1000 / Widerstand 10k / Widerstand 5k / Widerstand 2k5 / Widerstand 500R / ab Fw. V02-05</td>
</tr>
<tr>
<td>Schaltungsart E 0</td>
<td>4 Leiter</td>
<td>2 Leiter / 3 Leiter / 4 Leiter</td>
</tr>
<tr>
<td>Schaltungsart E 1</td>
<td>4 Leiter</td>
<td>2 Leiter / 3 Leiter / 4 Leiter</td>
</tr>
<tr>
<td>Schaltungsart E 2</td>
<td>4 Leiter</td>
<td>2 Leiter / 3 Leiter / 4 Leiter</td>
</tr>
<tr>
<td>Schaltungsart E 3</td>
<td>4 Leiter</td>
<td>2 Leiter / 3 Leiter / 4 Leiter</td>
</tr>
<tr>
<td>Schaltungsart E 4</td>
<td>4 Leiter</td>
<td>2 Leiter / 3 Leiter / 4 Leiter</td>
</tr>
<tr>
<td>Schaltungsart E 5</td>
<td>4 Leiter</td>
<td>2 Leiter / 3 Leiter / 4 Leiter</td>
</tr>
<tr>
<td>Schaltungsart E 6</td>
<td>4 Leiter</td>
<td>2 Leiter / 3 Leiter / 4 Leiter</td>
</tr>
<tr>
<td>Schaltungsart E 7</td>
<td>4 Leiter</td>
<td>2 Leiter / 3 Leiter / 4 Leiter</td>
</tr>
</tbody>
</table>
Kopplungsbeschreibung PROFIBUS DP

3.2.3.5 TIM mV 9481

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Wertebereich / Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Input Filter</td>
<td>50 Hz</td>
<td>50 Hz / 60 Hz</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 0</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 1</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 2</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 3</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 4</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 5</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 6</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 7</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Fehlerüberwachung E 0</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 1</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 2</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 3</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 4</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 5</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 6</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 7</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Typ E 0</td>
<td>THC Typ K</td>
<td>0...100 mV</td>
</tr>
<tr>
<td>Typ E 1</td>
<td>THC Typ K</td>
<td>THC Typ B</td>
</tr>
<tr>
<td>Typ E 2</td>
<td>THC Typ K</td>
<td>THC Typ E</td>
</tr>
<tr>
<td>Typ E 3</td>
<td>THC Typ K</td>
<td>THC Typ J</td>
</tr>
<tr>
<td>Typ E 4</td>
<td>THC Typ K</td>
<td>THC Typ K</td>
</tr>
<tr>
<td>Typ E 5</td>
<td>THC Typ K</td>
<td>THC Typ N</td>
</tr>
<tr>
<td>Typ E 6</td>
<td>THC Typ K</td>
<td>THC Typ R</td>
</tr>
<tr>
<td>Typ E 7</td>
<td>THC Typ K</td>
<td>THC Typ S</td>
</tr>
<tr>
<td>Eingangssignal E 0</td>
<td>symmetrisch</td>
<td></td>
</tr>
<tr>
<td>Eingangssignal E 1</td>
<td>symmetrisch</td>
<td></td>
</tr>
<tr>
<td>Eingangssignal E 2</td>
<td>symmetrisch</td>
<td></td>
</tr>
<tr>
<td>Eingangssignal E 3</td>
<td>symmetrisch</td>
<td></td>
</tr>
<tr>
<td>Eingangssignal E 4</td>
<td>symmetrisch</td>
<td></td>
</tr>
<tr>
<td>Eingangssignal E 5</td>
<td>symmetrisch</td>
<td></td>
</tr>
<tr>
<td>Eingangssignal E 6</td>
<td>symmetrisch</td>
<td></td>
</tr>
<tr>
<td>Eingangssignal E 7</td>
<td>symmetrisch</td>
<td></td>
</tr>
</tbody>
</table>
Kopplungsbeschreibung PROFIBUS DP

3.2.3.6 TIM 9482

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Wertebereich / Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus/Ein</td>
</tr>
<tr>
<td>Modul Betriebsart</td>
<td>8 Kanal genau</td>
<td>8 Kanal genau / 4 Kanal schnell</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 0</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 1</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 6</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 7</td>
<td>Status Code</td>
<td>Status Code</td>
</tr>
<tr>
<td>Fehlerüberwachung E 0</td>
<td>Ein</td>
<td>Aus/Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 1</td>
<td>Ein</td>
<td>Aus/Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 6</td>
<td>Ein</td>
<td>Aus/Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 7</td>
<td>Ein</td>
<td>Aus/Ein</td>
</tr>
<tr>
<td>Auswahl TC Vergleichsstelle</td>
<td>Intern</td>
<td>Intern / Extern 3 Leiter</td>
</tr>
<tr>
<td>Typ TC ext. Vergleichsstelle E6-E7</td>
<td>PT100</td>
<td>PT100 / PT1000 / PT100 GOST</td>
</tr>
<tr>
<td>Typ E 0</td>
<td>Pt 100</td>
<td>Pt100 / Pt500 / Pt1000 / Ni100 / Ni500 / Ni1000 / Widerstand (Poti) 10k / Widerstand (Poti) 5k / Widerstand (Poti) 2k5 / Widerstand (Poti) 500R / Pt100 GOST / M50 GOST / M100 GOST / Cu53 GOST / Pt46 GOST / Pt50 GOST / 0...100 mV / THC Typ B / THC Typ E / THC Typ J / THC Typ K / THC Typ N / THC Typ R / THC Typ S / THC Typ T / THC Typ L / THC Typ U / THC Typ XK (L)</td>
</tr>
<tr>
<td>Typ E 1</td>
<td>Pt 100</td>
<td></td>
</tr>
<tr>
<td>Typ E 2</td>
<td>Pt 100</td>
<td></td>
</tr>
<tr>
<td>Typ E 3</td>
<td>Pt 100</td>
<td></td>
</tr>
<tr>
<td>Typ E 4</td>
<td>Pt 100</td>
<td></td>
</tr>
<tr>
<td>Typ E 5</td>
<td>Pt 100</td>
<td></td>
</tr>
<tr>
<td>Typ E 6</td>
<td>Pt 100</td>
<td></td>
</tr>
<tr>
<td>Typ E 7</td>
<td>Pt 100</td>
<td></td>
</tr>
<tr>
<td>Schaltungsart (R) E 0</td>
<td>*1)</td>
<td>4 Leiter (R in Ohm)</td>
</tr>
<tr>
<td>Schaltungsart (R) E 1</td>
<td>*1)</td>
<td>2 Leiter (Poti in Ohm)</td>
</tr>
<tr>
<td>Schaltungsart (R) E 2</td>
<td>*1)</td>
<td>3 Leiter (Poti in %)</td>
</tr>
<tr>
<td>Schaltungsart (R) E 3</td>
<td>*1)</td>
<td>4 Leiter (Poti in %)</td>
</tr>
<tr>
<td>Schaltungsart (R) E 4</td>
<td>*1)</td>
<td></td>
</tr>
<tr>
<td>Schaltungsart (R) E 5</td>
<td>*1)</td>
<td></td>
</tr>
<tr>
<td>Schaltungsart (R) E 6</td>
<td>*1)</td>
<td></td>
</tr>
<tr>
<td>Schaltungsart (R) E 7</td>
<td>*1)</td>
<td></td>
</tr>
</tbody>
</table>

*1) Parameter ´Schaltungsart´ bei THC nicht wirksam. THC immer in 2 Leiter Messung.
Kopplungsbeschreibung PROFIBUS DP

3.2.3.7 DIM (9470/3x im kompatiblen Mode)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Wertebereich / Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 0</td>
<td>0</td>
<td>0 / 1</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 1</td>
<td></td>
<td>Halten (Initialwert 0) / Halten (Initialwert 1)</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall E 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 0</td>
<td>Ein</td>
<td>Aus / Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung E 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung E 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung E 0</td>
<td>Nein</td>
<td>Nein / Ja</td>
</tr>
<tr>
<td>Invertierung E 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung E 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung E 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverlängerung E 0</td>
<td>0 Sek.</td>
<td>0 s / 0,6 s / 1,2 s / 2,4 s</td>
</tr>
<tr>
<td>Impulsverlängerung E 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverlängerung E 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverlängerung E 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebsart E 14</td>
<td>Freq. 0-1 kHz / DI</td>
<td>Zähler Freq. 0-1 kHz / DI Freq. 0-20 kHz Torz. 50 ms / DI Freq. 0-20 kHz Torz. 200 ms / DI Freq. 0-20 kHz Torz. 1 s / DI</td>
</tr>
<tr>
<td>Zählerereignis E 14</td>
<td>positive Flanke</td>
<td>positive Flanke / negative Flanke</td>
</tr>
<tr>
<td>Betriebsart E 15</td>
<td>Freq. 0-1 kHz / DI</td>
<td>s. o.</td>
</tr>
<tr>
<td>Zählerereignis E 15</td>
<td>positive Flanke</td>
<td>s. o.</td>
</tr>
</tbody>
</table>

Parameter nicht vorhanden bei DIM 24 V ! (9471/...)

Parameter nur bei Betriebsart DIM16 + CF verfügbar!
Kopplungsbeschreibung PROFIBUS DP

3.2.3.8 DIOM 9470/3x, 9471/35, 9472/35 (IS1+)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Wertebereich / Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus Ein</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 0</td>
<td>0</td>
<td>0 1 Halten (Initialwert 0) Halten (Initialwert 1)</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall S 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 0</td>
<td>Ein</td>
<td>Aus Ein</td>
</tr>
<tr>
<td>Fehlerüberwachung S 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung S 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung DI S0, S1</td>
<td> </td>
<td>Nein Ja (wirkt nur auf DI signale)</td>
</tr>
<tr>
<td>Invertierung DI S2, S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung DI S4, S5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung DI S6, S7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung DI S8, S9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung DI S10, S11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung DI S12, S13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Invertierung DI S14, S15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverl. / Filter S0, S1</td>
<td>0 Sek.</td>
<td>0 s / Aus 0,6 s / Klein 1,2 s / Mittel 2,4 s / Groβ</td>
</tr>
<tr>
<td>Impulsverl. / Filter S2, S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverl. / Filter S4, S5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverl. / Filter S6, S7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverl. / Filter S8, S9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverl. / Filter S10, S11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverl. / Filter S12, S13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Impulsverl. / Filter S14, S15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S0, S1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S2, S3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S4, S5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S6, S7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S8, S9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S10, S11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S12, S13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signaltyp S14, S15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebsart S8, S9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebsart S10, S11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebsart S12, S13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betriebsart S14, S15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählerereignis S8, S9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählerereignis S10, S11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählerereignis S12, S13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zählerereignis S14, S15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Parameter nur in Betriebsart DI/DO vorhanden!

Parameter nur bei Betriebsarten mit CF (Zähler/Frequenz) verfügbar!
Kopplungsbeschreibung PROFIBUS DP

3.2.3.9 AOM / AOMH 9466

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Wertebereich / Auswahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 0</td>
<td>0 %</td>
<td>-10 % (nur 4 mA)</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 1</td>
<td>0 %</td>
<td>0 %</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 2</td>
<td>0 %</td>
<td>100 %</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 3</td>
<td>0 %</td>
<td>110 %</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 4</td>
<td>0 %</td>
<td>Halten</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 5</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 6</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 7</td>
<td>0 %</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung A 0</td>
<td>Ein</td>
<td>Aus</td>
</tr>
<tr>
<td>Fehlerüberwachung A 1</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung A 2</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung A 3</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung A 4</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung A 5</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung A 6</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Fehlerüberwachung A 7</td>
<td>Ein</td>
<td></td>
</tr>
<tr>
<td>Ausgangsbereich A 0</td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgangsbereich A 1</td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgangsbereich A 2</td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgangsbereich A 3</td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgangsbereich A 4</td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgangsbereich A 5</td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgangsbereich A 6</td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Ausgangsbereich A 7</td>
<td>4...20 mA</td>
<td></td>
</tr>
<tr>
<td>Scan HART Livelist</td>
<td>Ein</td>
<td>Aus</td>
</tr>
<tr>
<td>Ausgang Nr. HART Gerät für Pos. 1</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Ausgang Nr. HART Gerät für Pos. 2</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Ausgang Nr. HART Gerät für Pos. 3</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Ausgang Nr. HART Gerät für Pos. 4</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Ausgang Nr. HART Gerät für Pos. 5</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Ausgang Nr. HART Gerät für Pos. 6</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Ausgang Nr. HART Gerät für Pos. 7</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Ausgang Nr. HART Gerät für Pos. 8</td>
<td>Nicht verwendet</td>
<td></td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 1</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 2</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 3</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 4</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 5</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 6</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 7</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
<tr>
<td>Nr. HART Variable für Pos. 8</td>
<td>HART Variable Nr. 2</td>
<td></td>
</tr>
</tbody>
</table>

Nur bei HART Modulen (AOMH) verfügbar!
3.2.3.10 DOM

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Defaultwert</th>
<th>Wertebereich / Auswahl</th>
<th>Parameter vorhanden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnose Meldungen des Moduls</td>
<td>Ein</td>
<td>Aus</td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 0</td>
<td>0</td>
<td></td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 1</td>
<td>0</td>
<td></td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 2</td>
<td>0</td>
<td></td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 3</td>
<td>0</td>
<td></td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 4</td>
<td>0</td>
<td></td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 5</td>
<td>0</td>
<td></td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 6</td>
<td>0</td>
<td></td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Verhalten im Fehlerfall A 7</td>
<td>0</td>
<td></td>
<td>✓ ✓ ✓</td>
</tr>
<tr>
<td>Fehlerüberwachung A 0</td>
<td>Ein</td>
<td></td>
<td>✓ - -</td>
</tr>
<tr>
<td>Fehlerüberwachung A 1</td>
<td>Ein</td>
<td></td>
<td>✓ - -</td>
</tr>
<tr>
<td>Fehlerüberwachung A 2</td>
<td>Ein</td>
<td></td>
<td>✓ - -</td>
</tr>
<tr>
<td>Fehlerüberwachung A 3</td>
<td>Ein</td>
<td></td>
<td>✓ - -</td>
</tr>
<tr>
<td>Fehlerüberwachung A 4</td>
<td>Ein</td>
<td></td>
<td>✓ - -</td>
</tr>
<tr>
<td>Fehlerüberwachung A 5</td>
<td>Ein</td>
<td></td>
<td>✓ - -</td>
</tr>
<tr>
<td>Fehlerüberwachung A 6</td>
<td>Ein</td>
<td></td>
<td>✓ - -</td>
</tr>
<tr>
<td>Fehlerüberwachung A 7</td>
<td>Ein</td>
<td></td>
<td>✓ - -</td>
</tr>
<tr>
<td>Ausgang 0 und 1 parallel</td>
<td>Ausgänge einzeln</td>
<td></td>
<td>✓ ✓ -</td>
</tr>
<tr>
<td>Ausgang 2 und 3 parallel</td>
<td>Ausgänge einzeln</td>
<td></td>
<td>✓ ✓ -</td>
</tr>
<tr>
<td>Ausgang 4 und 5 parallel</td>
<td>Ausgänge einzeln</td>
<td></td>
<td>✓ ✓ -</td>
</tr>
<tr>
<td>Ausgang 6 und 7 parallel</td>
<td>Ausgänge einzeln</td>
<td></td>
<td>✓ ✓ -</td>
</tr>
</tbody>
</table>

Ausgänge parallel
3.2.4 Bitcodierung der IO-Modul Parameter

3.2.4.1 AIM / AIMH / AUMH

(SAIMH siehe Betriebsanleitung SAIMH 9462/... PROFIsafe)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Hex</th>
<th>Wert</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13</td>
<td>0</td>
<td>Diagnose Meldungen des Moduls 0 = Aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>1 = Ein</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>Input Filter</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>0 = klein</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>2</td>
<td>1 = mittel</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>2 = groß (50 Hz)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>4</td>
<td>3 = groß (60 Hz)</td>
</tr>
<tr>
<td>1</td>
<td>CC</td>
<td>1</td>
<td>Scan HART Livelist</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 = Ein</td>
</tr>
<tr>
<td>2</td>
<td>CC</td>
<td>1</td>
<td>Verhalten im Fehlerfall S 0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 = Ein</td>
</tr>
<tr>
<td>3</td>
<td>CC</td>
<td>1</td>
<td>Verhalten im Fehlerfall S 2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 = Ein</td>
</tr>
<tr>
<td>4</td>
<td>CC</td>
<td>1</td>
<td>Verhalten im Fehlerfall S 3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 = Ein</td>
</tr>
<tr>
<td>5</td>
<td>FF</td>
<td>1</td>
<td>Signal Bereich S 0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Nein</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 = Ja</td>
</tr>
<tr>
<td>6</td>
<td>00</td>
<td>0</td>
<td>Messbereich Grenzen gem NAMUR E 1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Nein</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 = Ja</td>
</tr>
<tr>
<td>7</td>
<td>88</td>
<td>1</td>
<td>Eingang Nr. HART Gerät für Pos. 1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>8 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td>8</td>
<td>88</td>
<td>1</td>
<td>Eingang Nr. HART Gerät für Pos. 2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>8 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>0</td>
<td>Nr. HART Variable für Pos. 1</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0 = HART Variable Nr. 1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 = HART Variable Nr. 2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>2 = HART Variable Nr. 3</td>
</tr>
<tr>
<td>10</td>
<td>88</td>
<td>1</td>
<td>Eingang Nr. HART Gerät für Pos. 5</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>8 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td>11</td>
<td>88</td>
<td>1</td>
<td>Eingang Nr. HART Gerät für Pos. 6</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>8 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td>12</td>
<td>55</td>
<td>0</td>
<td>Nr. HART Variable für Pos. 7</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0</td>
<td>0 = HART Variable Nr. 1</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 = HART Variable Nr. 2</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>3</td>
<td>2 = HART Variable Nr. 3</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>5</td>
<td>3 = HART Variable Nr. 4</td>
</tr>
<tr>
<td>13</td>
<td>00</td>
<td>0</td>
<td>Signaltyp S 0</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td>0 = Analog Input</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>1</td>
<td>1 = Analog Output (nur bei 9468/3x)</td>
</tr>
</tbody>
</table>
Verhalten im Fehlerfall für DI/DO

<table>
<thead>
<tr>
<th>Byte</th>
<th>Hex</th>
<th>Bezeichnung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>53</td>
<td>1 Diagnose Meldungen des Moduls</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = EIN</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0 0 1 Input Filter</td>
<td>0 = klein</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = mittel</td>
<td>2 = groß (50 Hz)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = groß (60 Hz)</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>CC</td>
<td>1 0 0 Verhalten im Fehlerfall S 0</td>
<td>0 = -10 % (nur 4-20 mA) / 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = EIN</td>
<td>1 = 0 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 = AI Status Code / AO 110 % / 1</td>
<td>3 = AI Status Code / AO 0 % / 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 = Halten (Initialwert 0%/0)</td>
<td>7 = Halten (Initialwert 100%/1)</td>
</tr>
<tr>
<td>2</td>
<td>CC</td>
<td>1 0 0 Verhalten im Fehlerfall S 1</td>
<td>s. o.</td>
</tr>
<tr>
<td>3</td>
<td>CC</td>
<td>1 0 0 Verhalten im Fehlerfall S 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CC</td>
<td>1 0 0 Verhalten im Fehlerfall S 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>00</td>
<td>1 0 0 Verhalten im Fehlerfall S 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>1 0 0 Verhalten im Fehlerfall S 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>1 0 0 Verhalten im Fehlerfall S 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>1 0 0 Verhalten im Fehlerfall S 7</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>00</td>
<td>0 0 0 Signal Art S0</td>
<td>0 = 2 Leiter analog</td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>0 0 0 Signal Art S1</td>
<td>1-3 = Reserviert</td>
</tr>
<tr>
<td>7</td>
<td>88</td>
<td>0 0 0 Signal Art S4</td>
<td>0 = 2 Leiter analog</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>0 0 0 Signal Art S5</td>
<td>1 = 3/4 Leiter analog (nur Input)</td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>0 0 0 Signal Art S6</td>
<td>2 = 2/3 Leiter digital</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>0 0 0 Signal Art S7</td>
<td>3 = Reserviert</td>
</tr>
<tr>
<td>10</td>
<td>88</td>
<td>0 1 0 0 Eingang Nr. HART Gerät für Pos. 1</td>
<td>8 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td>11</td>
<td>88</td>
<td>0 1 0 0 Eingang Nr. HART Gerät für Pos. 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>0 1 0 0 Eingang Nr. HART Gerät für Pos. 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>88</td>
<td>0 1 0 0 Eingang Nr. HART Gerät für Pos. 4</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>55</td>
<td>0 1 0 0 Eingang Nr. HART Gerät für Pos. 5</td>
<td>8 = Nicht verwendet (9 – 15 Reserved)</td>
</tr>
<tr>
<td>13</td>
<td>00</td>
<td>0 1 0 0 Eingang Nr. HART Gerät für Pos. 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>0 1 0 0 Eingang Nr. HART Gerät für Pos. 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>00</td>
<td>0 1 0 0 Eingang Nr. HART Gerät für Pos. 8</td>
<td></td>
</tr>
</tbody>
</table>

Verhalten im Fehlerfall für DI/DO:

- 0%, -10% = 0
- 100%, 110% = 1
Kopplungsbeschreibung PROFIBUS DP

3.2.4.3 TIMR 9480

<table>
<thead>
<tr>
<th>Byte</th>
<th>Hex</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>Bezeichnung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td>Diagnose Meldungen des Moduls</td>
<td>0 = Aus, 1 = Ein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>Input Filter</td>
<td>0 = 50 Hz, 1 = 60 Hz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Betriebsart</td>
<td>0 = 8 Eingänge, 1 = 2 Eingänge</td>
</tr>
<tr>
<td>1</td>
<td>BB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Verhalten im Fehlerfall E 0</td>
<td>3 = Status Code</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Fehlerüberwachung E 0</td>
<td>6 = Halten (Initialisierungswert 0%)</td>
</tr>
<tr>
<td>2</td>
<td>BB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Fehlerüberwachung E 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Verhalten im Fehlerfall E 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Fehlerüberwachung E 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Verhalten im Fehlerfall E 2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Fehlerüberwachung E 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Verhalten im Fehlerfall E 3</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AA</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schaltungsart E 0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Schaltungsart E 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Schaltungsart E 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>AA</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Schaltungsart E 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Schaltungsart E 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Schaltungsart E 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Schaltungsart E 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Schaltungsart E 7</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Typ Eingang 0</td>
<td>0 = Pt100, 1 = Pt500, 2 = Pt1000, 3 = Ni100, 4 = Ni500, 5 = Ni1000, 6 = Widerstand 10k, 7 = Widerstand 5k, 8 = Widerstand 2k5, 9 = Widerstand 500R, 10 = Pt100 GOST, 11 = M50 GOST, 12 = M100 GOST, 13 = Cu53 GOST, 14 = Pt46 GOST, 15 = Pt50 GOST</td>
</tr>
<tr>
<td>8</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Typ Eingang 1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Typ Eingang 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Widerstand 10k</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>Widerstand 5k</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Widerstand 2k5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9</td>
<td>Widerstand 500R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Typ Eingang 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>ab Fw. V02-04</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Typ Eingang 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>ab Fw. V02-05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Typ Eingang 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>ab Fw. V02-05</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Typ Eingang 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>ab Fw. V02-05</td>
<td></td>
</tr>
<tr>
<td>11 ..13</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht benutzt</td>
<td></td>
</tr>
</tbody>
</table>

Technische Änderungen vorbehalten.
Kopplungsbeschreibung PROFIBUS DP

3.2.4.4 TIM mV 9481

<table>
<thead>
<tr>
<th>Byte</th>
<th>Hex</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>Bezeichnung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: Diagnose Meldungen des Moduls</td>
<td>0: Aus</td>
</tr>
<tr>
<td></td>
<td>0: Input Filter</td>
<td>1: Ein</td>
</tr>
<tr>
<td>1</td>
<td>BB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Verhalten im Fehlerfall E 0</td>
<td>3: Status Code</td>
</tr>
<tr>
<td></td>
<td>1: Fehlerüberwachung E 0</td>
<td>6: Halten (Initialisierungswert 0%)</td>
</tr>
<tr>
<td>2</td>
<td>BB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Verhalten im Fehlerfall E 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Fehlerüberwachung E 2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Verhalten im Fehlerfall E 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Fehlerüberwachung E 4</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BB</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Verhalten im Fehlerfall E 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1: Fehlerüberwachung E 6</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>00</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Eingangssignal E 0</td>
<td>0: symmetrisch</td>
</tr>
<tr>
<td></td>
<td>1: Eingangssignal E 1</td>
<td>1: unsymmetrisch</td>
</tr>
<tr>
<td>6</td>
<td>44</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Typ Eingang 0</td>
<td>0 = 0…100 mV</td>
</tr>
<tr>
<td></td>
<td>1: Typ Eingang 1</td>
<td>1 = THC Typ B</td>
</tr>
<tr>
<td></td>
<td>2: Typ Eingang 2</td>
<td>2 = THC Typ K</td>
</tr>
<tr>
<td></td>
<td>3: Typ Eingang 3</td>
<td>3 = THC Typ J</td>
</tr>
<tr>
<td>7</td>
<td>44</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Typ Eingang 4</td>
<td>4 = THC Typ K</td>
</tr>
<tr>
<td></td>
<td>1: Typ Eingang 5</td>
<td>5 = THC Typ N</td>
</tr>
<tr>
<td></td>
<td>2: Typ Eingang 6</td>
<td>6 = THC Typ R</td>
</tr>
<tr>
<td></td>
<td>3: Typ Eingang 7</td>
<td>7 = THC Typ S</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Typ Eingang 8</td>
<td>8 = THC Typ T</td>
</tr>
<tr>
<td></td>
<td>1: Typ Eingang 9</td>
<td>9 = THC Typ L</td>
</tr>
<tr>
<td></td>
<td>2: Typ Eingang 10</td>
<td>10 = THC Typ U</td>
</tr>
<tr>
<td></td>
<td>3: Typ Eingang 11</td>
<td>11 = THC Typ XK (L)</td>
</tr>
<tr>
<td>9</td>
<td>44</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: Typ Eingang 12</td>
<td>(12…15 = reserviert)</td>
</tr>
<tr>
<td></td>
<td>1: Typ Eingang 13</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0: nicht benutzt</td>
<td></td>
</tr>
</tbody>
</table>

Notizen:
- Technische Änderungen vorbehalten.
- 0 = Aus, 1 = Ein
- 0 = 50 Hz, 1 = 60 Hz
- 0 = Halten (Initialisierungswert 0%)
Kopplungsbeschreibung PROFIBUS DP

3.2.4.5 TIM 9482

<table>
<thead>
<tr>
<th>Byte</th>
<th>Defaultwert</th>
<th>Hex</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>Bezeichnung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Diagnose Meldungen des Moduls</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td>1 = Ein</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modul Betriebsart (Module operation mode)</td>
<td>0 = 8 Kanal genau</td>
</tr>
<tr>
<td></td>
<td>1 = 4 Kanal schnell</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>BB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall E 0</td>
<td>3 = Status Code</td>
</tr>
<tr>
<td></td>
<td>6 = Halten (Initialisierungswert 0%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0 = Aus</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Ein</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>BB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall E 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fehlerüberwachung E 1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>BB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall E 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fehlerüberwachung E 6</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>BB</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall E 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fehlerüberwachung E 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auswahl TC Vergleichsstelle</td>
<td>0 = Intern</td>
</tr>
<tr>
<td></td>
<td>1 = Extern 3 Leiter</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Typ TC ext. Vergleichsstelle E6-E7</td>
<td>0 = PT100</td>
</tr>
<tr>
<td></td>
<td>1 = PT1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = PT100 GOST</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Typ E 0</td>
<td>Typ :</td>
</tr>
<tr>
<td></td>
<td>0 = Pt100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Pt500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = Pt1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = Ni100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4 = Ni500</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5 = Ni1000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6 = Widerstand (Poti) 10k</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7 = Widerstand (Poti) 5k</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 = Widerstand (Poti) 2k5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9 = Widerstand (Poti) 50k</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10 = Pt100 GOST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11 = M50 GOST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 = M100 GOST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>13 = Cu53 GOST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14 = Pt46 GOST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15 = Pt50 GOST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16…31 = reserviert</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32 = 0...100 mV</td>
<td></td>
</tr>
<tr>
<td></td>
<td>33 = THC Typ B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>34 = THC Typ E</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35 = THC Typ J</td>
<td></td>
</tr>
<tr>
<td></td>
<td>36 = THC Typ K</td>
<td></td>
</tr>
<tr>
<td></td>
<td>37 = THC Typ N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>38 = THC Typ R</td>
<td></td>
</tr>
<tr>
<td></td>
<td>39 = THC Typ S</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40 = THC Typ T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>41 = THC Typ L</td>
<td></td>
</tr>
<tr>
<td></td>
<td>42 = THC Typ U</td>
<td></td>
</tr>
<tr>
<td></td>
<td>43 = THC Typ X(L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>44…63 = reserviert</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Schaltungsart (R) E 7</td>
<td>Schaltungsart: *1)</td>
</tr>
<tr>
<td></td>
<td>0 = 2 Leiter (Poti in Ohm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = 3 Leiter (Poti in %)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 = 4 Leiter (Poti in Ohm)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 = 4 Leiter (Poti in %)</td>
<td></td>
</tr>
</tbody>
</table>

*1) Parameter ‘Schaltungsart’ bei THC nicht wirksam. THC immer in 2 Leiter Messung.
Kopplungsbeschreibung PROFIBUS DP

3.2.4.6 DIM (9470/3x im kompatiblen Mode)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Hex</th>
<th>Bezeichnung</th>
<th>Wert</th>
</tr>
</thead>
</table>
| 0 | 01 | Diagnose Meldungen des Moduls | 0 = Aus
1 = Ein |
| 1 | FF | Fehlerüberwachung E 0 - E 7 | | 0 = Aus
1 = Ein |
| 2 | FF | Fehlerüberwachung E 8 - E 15 | | |
| 3 | 00 | Verhalten im Fehlerfall E 0 - E 15 | 0 = Ersatzwert '0'
1 = Ersatzwert '1' |
| 4 | 00 | Verhalten im Fehlerfall E 0 - E 15 | 2 = Halten (Initialwert 0)
3 = Halten (Initialwert 1) |
| 5 | 00 | Verhalten im Fehlerfall E 0 - E 15 | |
| 6 | 00 | Verhalten im Fehlerfall E 0 - E 15 | |
| 7 | 00 | Impulsverlängerung E 0 - E 15 | 0 = 0 s
1 = 0,6 s
2 = 1,2 s
3 = 2,4 s |
| 8 | 00 | Impulsverlängerung E 0 - E 15 | |
| 9 | 00 | Impulsverlängerung E 0 - E 15 | |
| 10 | 00 | Impulsverlängerung E 0 - E 15 | |
| 11 | 00 | Invertierung E 0 - E 7 | 0 = nein
1 = invertieren |
| 12 | 00 | Invertierung E 0 - E 7 | |
| 13 | 11 | Betriebsart E 14 | 0 = Zähler
1 = Freq. 0-1 kHz / DI
2 = Freq. 0-20 kHz Torz. 50 ms / DI
3 = Freq. 0-20 kHz Torz. 200 ms / DI
4 = Freq. 0-20 kHz Torz. 1 s / DI |
| | 0 | Zählereignis E 14 | 0 = positive Flanke
1 = negative Flanke |
| | 0 | Zählereignis E 15 | |

Betriebsart E 14:
- 0 = Zähler
- 1 = Freq. 0-1 kHz / DI
- 2 = Freq. 0-20 kHz Torz. 50 ms / DI
- 3 = Freq. 0-20 kHz Torz. 200 ms / DI
- 4 = Freq. 0-20 kHz Torz. 1 s / DI

Zählereignis E 14:
- 0 = positive Flanke
- 1 = negative Flanke

Betriebsart E 15:
- 0 = Zähler
- 1 = negative Flanke

Technische Änderungen vorbehalten
<table>
<thead>
<tr>
<th>Byte</th>
<th>Hex</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>Bezeichnung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Diagnose Meldungen des Moduls</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td>= Aus</td>
<td>1 = Ein</td>
</tr>
<tr>
<td>1 FF</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fehlerüberwachung S0</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>= Ein</td>
<td></td>
</tr>
<tr>
<td>2 FF</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fehlerüberwachung S15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>00</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall S0</td>
<td>0 = Ersatzwert '0'</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>= Halten (Initialwert 0)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>00</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall S12</td>
<td>3 = Halten (Initialwert 1)</td>
</tr>
<tr>
<td>7</td>
<td>00</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Impulsverl. / Filter S6, S7</td>
<td>1 = 0,6 s / Klein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>= 1,2 s / Mittel</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>00</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Signaltyp S8, S9</td>
<td>3 = 2,4 s / Groß</td>
</tr>
<tr>
<td>10</td>
<td>00</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Signaltyp S14, S15</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>00</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Invertierung DI S9, S15</td>
<td>0 = nein</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>= invertieren</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(wirkt nur auf DI Signale)</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>22</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>Betriebsart S8, S9</td>
<td>0 = Zähler 16 Bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>= negative Flanke</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>= positive Flanke</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>22</td>
<td></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td>Betriebsart S12, S13</td>
<td>s. o.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>= negative Flanke</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>= positive Flanke</td>
<td></td>
</tr>
</tbody>
</table>

Betriebsanleitung

Kopplungsbeschreibung PROFIBUS DP

DIOM 9470/3x, 9471/35, 9472/35 (IS1+)
Kopplungsbeschreibung PROFIBUS DP

3.2.4.7 AOM / AOMH 9466

<table>
<thead>
<tr>
<th>Byte</th>
<th>Hex</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>Bezeichnung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td>Diagnose Meldungen des Moduls</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td>1 = Ein</td>
</tr>
<tr>
<td></td>
<td>Scan HART Livelist</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td>1 = Ein</td>
</tr>
<tr>
<td>1</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Verhalten im Fehlerfall A 0</td>
<td>0 = -10 % (nur 4 mA)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = 0 %</td>
</tr>
<tr>
<td></td>
<td>2 = 100 %</td>
</tr>
<tr>
<td></td>
<td>3 = 110 %</td>
</tr>
<tr>
<td></td>
<td>7 = Halten</td>
</tr>
<tr>
<td>2</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Verhalten im Fehlerfall A 1</td>
<td>0 = Aus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Ein</td>
</tr>
<tr>
<td>3</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Verhalten im Fehlerfall A 2</td>
<td>0 = Aus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Ein</td>
</tr>
<tr>
<td>4</td>
<td>99</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>Fehlerüberwachung A 3</td>
<td>0 = Aus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = Ein</td>
</tr>
<tr>
<td>5</td>
<td>FF</td>
<td>1</td>
<td>1</td>
<td></td>
<td>Ausgangbereich A 0</td>
<td>0 = 0…20 mA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = 4…20 mA</td>
</tr>
<tr>
<td>6</td>
<td>88</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Ausgang Nr. HART Gerät für Pos. 1</td>
<td>0…7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>88</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Ausgang Nr. HART Gerät für Pos. 2</td>
<td>0 = HART Variable Nr. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = HART Variable Nr. 2</td>
</tr>
<tr>
<td></td>
<td>2 = HART Variable Nr. 3</td>
</tr>
<tr>
<td></td>
<td>3 = HART Variable Nr. 4</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>0</td>
<td>1</td>
<td></td>
<td>Nr. HART Variable für Pos. 1</td>
<td>0 = HART Variable Nr. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = HART Variable Nr. 2</td>
</tr>
<tr>
<td></td>
<td>2 = HART Variable Nr. 3</td>
</tr>
<tr>
<td>9</td>
<td>88</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Ausgang Nr. HART Gerät für Pos. 5</td>
<td>0…7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 = Nicht verwendet</td>
</tr>
<tr>
<td></td>
<td>(9 – 15 Reserved)</td>
</tr>
<tr>
<td>10</td>
<td>88</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Ausgang Nr. HART Gerät für Pos. 7</td>
<td>0…7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8 = Nicht verwendet</td>
</tr>
<tr>
<td></td>
<td>(9 – 15 Reserved)</td>
</tr>
<tr>
<td>11</td>
<td>55</td>
<td>0</td>
<td>1</td>
<td></td>
<td>Nr. HART Variable für Pos. 5</td>
<td>0 = HART Variable Nr. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 = HART Variable Nr. 2</td>
</tr>
<tr>
<td></td>
<td>2 = HART Variable Nr. 3</td>
</tr>
<tr>
<td></td>
<td>3 = HART Variable Nr. 4</td>
</tr>
<tr>
<td></td>
<td>12..</td>
<td>0</td>
<td></td>
<td></td>
<td>nicht benutzt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kopplungsbeschreibung PROFIBUS DP

3.2.4.8 DOM

<table>
<thead>
<tr>
<th>Byte</th>
<th>Hex</th>
<th>7</th>
<th>6</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>0</th>
<th>Bezeichnung</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>01</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Diagnose Meldungen des Moduls</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td>1 = Ein</td>
</tr>
<tr>
<td>1</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall A 0</td>
<td>0 = Ersatzwert 0</td>
</tr>
<tr>
<td></td>
<td>1 = Ersatzwert 1</td>
</tr>
<tr>
<td></td>
<td>2 = Halten letzter Wert</td>
</tr>
<tr>
<td>2</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall A 1</td>
<td>Nicht benutzt</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>3</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall A 2</td>
<td>Nicht benutzt</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Verhalten im Fehlerfall A 3</td>
<td>Nicht benutzt</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5</td>
<td>AA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Fehlerüberwachung A 0</td>
<td>0 = Aus</td>
</tr>
<tr>
<td></td>
<td>1 = Ein ohne Prüfstrom</td>
</tr>
<tr>
<td></td>
<td>2 = Ein</td>
</tr>
<tr>
<td>6</td>
<td>AA</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>Fehlerüberwachung A 1</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>7</td>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>Ausgang 0 und 1 parallel</td>
<td>0: Ausgänge einzeln</td>
</tr>
<tr>
<td></td>
<td>1: Ausgänge parallel</td>
</tr>
<tr>
<td>8</td>
<td>.. 13</td>
<td>00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>nicht benutzt</td>
<td></td>
</tr>
</tbody>
</table>

Betriebsanleitung
3.3 Datenwertaufbau der I/O - Module

3.3.1 I/O - Baugruppen analog

Analogsignale werden zwischen der IS1+ Feldstation und einem Automatisierungssystem im 16 bit Zweierkomplement Format (signed integer) ausgetauscht. Die Umrechnung von und zu Gleitkommavariablen mit physikalischer Größe ist bei Bedarf im Automatisierungssystem durchzuführen.

3.3.1.1 AIM, AIMH (9460/.., 9461/.., 9468/.., 9469/..)

<table>
<thead>
<tr>
<th>Meßbereich 0 – 20 mA</th>
<th>Einheiten</th>
<th>%</th>
<th>Parameter: Messbereichsgrenzen gemäß NAMUR</th>
<th>Bereich</th>
<th>Diagnose Meldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>> 23,518 mA</td>
<td>*1)</td>
<td></td>
<td>Nein</td>
<td>Kurzschluss</td>
<td></td>
</tr>
<tr>
<td>> 21 mA</td>
<td></td>
<td></td>
<td>Ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>23,518 mA</td>
<td>32511</td>
<td>7EFF</td>
<td>117,6%</td>
<td>Nein</td>
<td>Übersteuerungsbereich</td>
</tr>
<tr>
<td>21 mA</td>
<td>29030</td>
<td>7166</td>
<td>105%</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>20 mA</td>
<td>27648</td>
<td>6C00</td>
<td>100%</td>
<td>Nein</td>
<td>Nennbereich</td>
</tr>
<tr>
<td>10 mA</td>
<td>13824</td>
<td>3600</td>
<td>50%</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>0 mA</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>< 0 mA</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>Nein</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Meßbereich 4 – 20 mA</th>
<th>Einheiten</th>
<th>%</th>
<th>Parameter: Messbereichsgrenzen gemäß NAMUR</th>
<th>Bereich</th>
<th>Diagnose Meldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>>22,814 mA</td>
<td>*1)</td>
<td></td>
<td>Nein</td>
<td>Kurzschluss</td>
<td></td>
</tr>
<tr>
<td>>21 mA</td>
<td></td>
<td></td>
<td>Ja</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22,814 mA</td>
<td>32511</td>
<td>7EFF</td>
<td>117,6%</td>
<td>Nein</td>
<td>Übersteuerungsbereich</td>
</tr>
<tr>
<td>21 mA</td>
<td>29376</td>
<td>72C0</td>
<td>106,25%</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>20 mA</td>
<td>27648</td>
<td>6C00</td>
<td>100%</td>
<td>Nein</td>
<td>Nennbereich</td>
</tr>
<tr>
<td>12 mA</td>
<td>13824</td>
<td>3600</td>
<td>50%</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>4 mA</td>
<td>0</td>
<td>0</td>
<td>0%</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>3,999 mA</td>
<td>-1</td>
<td>FFFF</td>
<td>-2,5%</td>
<td>Ja</td>
<td>Untersteuerungsbereich</td>
</tr>
<tr>
<td>3,6 mA</td>
<td>-691</td>
<td>FD4D</td>
<td>-10%</td>
<td>Nein</td>
<td></td>
</tr>
<tr>
<td>2,4 mA</td>
<td>-2765</td>
<td>F533</td>
<td>-10%</td>
<td>Ja</td>
<td></td>
</tr>
<tr>
<td>< 3,6 mA</td>
<td>*1)</td>
<td>*1)</td>
<td>Nein</td>
<td>Ja</td>
<td>Leitungsunterbrechung</td>
</tr>
<tr>
<td>< 2,4 mA</td>
<td></td>
<td></td>
<td>Nein</td>
<td>Nein</td>
<td></td>
</tr>
</tbody>
</table>

*1) Übertragener Wert abhängig von parametriertem Verhalten im Fehlerfall:

<table>
<thead>
<tr>
<th>Parametriertes Verhalten im Fehlerfall</th>
<th>Fehlerfall</th>
<th>Im Fehlerfall übertragener Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halten</td>
<td>Alle IO-Modul Fehler</td>
<td>-2765 0xF533</td>
</tr>
<tr>
<td></td>
<td>-10%</td>
<td>0x0000</td>
</tr>
<tr>
<td></td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Kurzschluss</td>
<td>32767</td>
<td>0x7FFF</td>
</tr>
<tr>
<td>Leitungsbruch</td>
<td>-32762</td>
<td>0x8006</td>
</tr>
<tr>
<td>Fehler bei 2 Leiter Abgleich</td>
<td>-32749</td>
<td>0x8013</td>
</tr>
<tr>
<td>Parametrierfehler</td>
<td>-32748</td>
<td>0x8014</td>
</tr>
<tr>
<td>Anlagen Aus</td>
<td>-32747</td>
<td>0x8015</td>
</tr>
<tr>
<td>IO-Modul meldet sich nicht</td>
<td>-32736</td>
<td>0x8020</td>
</tr>
<tr>
<td>Konfig. ungleich Baugruppe</td>
<td>-32735</td>
<td>0x8021</td>
</tr>
<tr>
<td>Daten nicht verfügbar</td>
<td>-32734</td>
<td>0x8022</td>
</tr>
<tr>
<td>IO-Modul Hardware Fehler</td>
<td>-32733</td>
<td>0x8023</td>
</tr>
</tbody>
</table>

Status Code

Globale Auswertung zur Statusbildung im AS für alle AI Signale

Signal ist gestört wenn Wert >= 32512 oder Wert <= -32512

siehe auch 3.4.1 Verhalten der Eingabesignale im Fehlerfall
Messbereichsgrenzen gemäß NAMUR:

Bei umschaltbaren AI/AO Signalen ist der Parameter immer sichtbar und bei AO wirkungslos!

Dieser Parameter ist verfügbar ab Firmware Version V01-02 aller AIM und AIMH module (9460/.. und
9461/..).

Bei Modulen mit älteren Firmwareständen ist dieser Parameter nicht wirksam. Diese Module arbeiten mit der festen Einstellung ‘Messbereichsgrenzen gem. NAMUR = Nein’.

Datenwortaufbau zyklische Analog Daten AIM 9460/…, AIMH 9461/…, AUMH9468/.. (NoStat)

ohne Signal Status

<table>
<thead>
<tr>
<th>Daten</th>
<th>Byte</th>
<th>Betriebsart</th>
<th>Var. Typ</th>
<th>Signale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8AI</td>
<td>8AI+4HV</td>
<td>8AI+8HV</td>
</tr>
</tbody>
</table>
| Input | 1–2 | A0 | | | Analog Eingangs-
| | 3–4 | A1 | | | signal A0 – A17 |
| | 5–6 | A2 | | | |
| | 7–8 | A3 | | | |
| | 9–10| A4 | | | |
| | 11–12| A5 | | | |
| | 13–14| A6 | | | |
| | 15–16| A7 | | | |
| | 17–20| | | | HV-P1 |
| | 21–24| | | | HV-P2 |
| | 25–28| | | | HV-P3 |
| | 29–32| | | | HV-P4 |
| | 33–36| | | | |
| | 37–40| | | | HV-P5 |
| | 41–44| | | | HV-P6 |
| | 45–48| | | | HV-P7 |
| | | | | | HV-P8 |
Kopplungsbeschreibung PROFIBUS DP

Datenwertaufbau zyklische Daten AUMH 9468/.. und UMH 9469/.. mit Signal Status

<table>
<thead>
<tr>
<th>9468:</th>
<th>8AI</th>
<th>8AO</th>
<th>6AI+2AO</th>
<th>8AI/8AO</th>
<th>8AI+4HV</th>
<th>8AO+4HV</th>
<th>8AI/8AO+4HV</th>
<th>8AI+8HV</th>
<th>8AO+8HV</th>
<th>8AI/8AO+8HV</th>
</tr>
</thead>
<tbody>
<tr>
<td>9469:</td>
<td>8I</td>
<td>8O</td>
<td>6I+2O</td>
<td>8I/8O</td>
<td>8I+4HV</td>
<td>8O+4HV</td>
<td>8I/8O+4HV</td>
<td>8I+8HV</td>
<td>8O+8HV</td>
<td>8I/8O+8HV</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Daten</th>
<th>Byte</th>
<th>Betriebsarten</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I0</td>
<td>S0 – S7</td>
</tr>
<tr>
<td>2</td>
<td>I0</td>
<td>S0 – S7</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>I1</td>
</tr>
<tr>
<td>4</td>
<td>I1</td>
<td>I1</td>
</tr>
<tr>
<td>5</td>
<td>I2</td>
<td>I2</td>
</tr>
<tr>
<td>6</td>
<td>I2</td>
<td>I2</td>
</tr>
<tr>
<td>7</td>
<td>I3</td>
<td>I3</td>
</tr>
<tr>
<td>8</td>
<td>I3</td>
<td>I3</td>
</tr>
<tr>
<td>9</td>
<td>I4</td>
<td>I4</td>
</tr>
<tr>
<td>10</td>
<td>I4</td>
<td>I4</td>
</tr>
<tr>
<td>11</td>
<td>I5</td>
<td>I5</td>
</tr>
<tr>
<td>12</td>
<td>I5</td>
<td>I5</td>
</tr>
<tr>
<td>13</td>
<td>I6</td>
<td>S0-S7</td>
</tr>
<tr>
<td>14</td>
<td>I6</td>
<td>S0-S7</td>
</tr>
<tr>
<td>15</td>
<td>I7</td>
<td>I7</td>
</tr>
<tr>
<td>16</td>
<td>I7</td>
<td>I7</td>
</tr>
<tr>
<td>17</td>
<td>S0-S7</td>
<td>S0-S7</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19-22</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23-26</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>27-30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>31-34</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35-38</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>39-42</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43-46</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>47-50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1-2</td>
<td>O0</td>
<td>O0</td>
</tr>
<tr>
<td>3-4</td>
<td>O1</td>
<td>O1</td>
</tr>
<tr>
<td>5-6</td>
<td>O2</td>
<td>O2</td>
</tr>
<tr>
<td>7-8</td>
<td>O3</td>
<td>O3</td>
</tr>
<tr>
<td>9-10</td>
<td>O4</td>
<td>O4</td>
</tr>
<tr>
<td>11-12</td>
<td>O5</td>
<td>O5</td>
</tr>
<tr>
<td>13-14</td>
<td>O6</td>
<td>O6</td>
</tr>
<tr>
<td>15-16</td>
<td>O7</td>
<td>O7</td>
</tr>
</tbody>
</table>

Readback: Bei allen 8AI/8AO Betriebsarten und Parametrierung eines Kanals als AO kann der ausgegebene Wert über das zugehörige AI Signal zurückgelesen werden (Readback). Bei Parametrierung als AI haben zugehörige AO Signale keine Wirkung.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Typ</th>
<th>Hinweis</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI/AO</td>
<td>I0-I7/O0-07</td>
<td>INT16 Skalierung siehe oben</td>
</tr>
<tr>
<td>DI/DO</td>
<td>I0-I7/O0-07 (9469/..)</td>
<td>INT16 Di: 0 = Aus ,1 = Ein DO: <=0 = Aus, >0 = Ein</td>
</tr>
<tr>
<td>Status S0 – S7</td>
<td>UINT16</td>
<td>Status Bit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HART Variablen HV</td>
<td>Float 32</td>
<td>HV werden auf den Positionen P1 bis P8 (HV-Px) übertragen</td>
</tr>
</tbody>
</table>
Kopplungsbeschreibung PROFIBUS DP

3.3.1.2 TIM (9480/..., 9481/..., 9482/...)

Temperaturmessung RTD, TC (1 Digit = 0,1 °C)

<table>
<thead>
<tr>
<th>Temperatur</th>
<th>Einheiten</th>
<th>Bereich</th>
<th>Diagnose Meldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000 °C</td>
<td>000</td>
<td>2710</td>
<td>Leitungsunterbrechung / Oberer Grenzwert überschritten</td>
</tr>
<tr>
<td>1 °C</td>
<td>000</td>
<td>000A</td>
<td></td>
</tr>
<tr>
<td>0 °C</td>
<td>000</td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>-0,1 °C</td>
<td>-0,1</td>
<td>FFFF</td>
<td></td>
</tr>
<tr>
<td>-100 °C</td>
<td>-100</td>
<td>FC18</td>
<td></td>
</tr>
<tr>
<td>*2)</td>
<td>*2)</td>
<td>*2)</td>
<td></td>
</tr>
</tbody>
</table>

*2) Der erfassbare Temperaturbereich ist abhängig vom parametrierten Eingangstyp (siehe Betriebsanleitung IS1)

2 Leiter und 4 Leiter Widerstandsmessung Poti in Ohm 500 R ...10K (Modul 9480/..., 9482/...)

<table>
<thead>
<tr>
<th>Messbereiche</th>
<th>Einheiten</th>
<th>%</th>
<th>Bereich</th>
<th>Diagnose Meldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>500R</td>
<td>2K5</td>
<td>5 K</td>
<td>10 K</td>
<td></td>
</tr>
<tr>
<td>>588 R</td>
<td>>2,94 K</td>
<td>>5,88 K</td>
<td>>11,76K</td>
<td>*1) *1)</td>
</tr>
<tr>
<td>588 R</td>
<td>2,94 K</td>
<td>5,88 K</td>
<td>11,76 K</td>
<td>32511 7EFF 117,6%</td>
</tr>
<tr>
<td>500 R</td>
<td>2K5</td>
<td>5 K</td>
<td>10 K</td>
<td>276486C00100%</td>
</tr>
<tr>
<td>250 R</td>
<td>1K250</td>
<td>2K5</td>
<td>5 K</td>
<td>13824360050%</td>
</tr>
<tr>
<td>0 K</td>
<td>0 K</td>
<td>0 K</td>
<td>0 K</td>
<td>000000%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 Leiter und 4 Leiter Widerstand Stellungsmessung Poti in % 500 R ...10K (Modul 9480/..., 9482/...)

<table>
<thead>
<tr>
<th>Messbereiche</th>
<th>Einheiten</th>
<th>%</th>
<th>Bereich</th>
<th>Diagnose Meldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>500R</td>
<td>2K5</td>
<td>5 K</td>
<td>10 K</td>
<td></td>
</tr>
<tr>
<td>>588 R</td>
<td>>2,94 K</td>
<td>>5,88 K</td>
<td>>11,76K</td>
<td>*1) *1)</td>
</tr>
<tr>
<td>Stellung 100 %</td>
<td></td>
<td></td>
<td></td>
<td>27648 6C00 100%</td>
</tr>
<tr>
<td>Stellung 50 %</td>
<td></td>
<td></td>
<td></td>
<td>13824 3600 50%</td>
</tr>
<tr>
<td>Stellung 0 %</td>
<td></td>
<td></td>
<td></td>
<td>0000 00 0%</td>
</tr>
<tr>
<td>< 50 R</td>
<td>< 250 R</td>
<td>< 500 R</td>
<td>< 1 K</td>
<td>*1) *1)</td>
</tr>
</tbody>
</table>

Hinweis: 9480 unterstützt keine 4 Leiter Leiter Widerstand Stellungsmessung in %

Hinweis: 9480 unterstützt keine 4 Leiter Leiter Widerstand Stellungsmessung in %

Hinweis: 9480 unterstützt keine 4 Leiter Leiter Widerstand Stellungsmessung in %
Kopplungsbeschreibung PROFIBUS DP

0 ... 100 mV Messung (bei 9481/.., 9482/..)

<table>
<thead>
<tr>
<th>Meßbereich</th>
<th>Einheiten</th>
<th>%</th>
<th>Bereich</th>
<th>Diagnose Meldungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 ... 100 mV</td>
<td>Dezimal</td>
<td>Hexadezimal</td>
<td>117,6 %</td>
<td>Übersteuerungsbereich</td>
</tr>
<tr>
<td>>117,6 mV</td>
<td>32511</td>
<td>7EFF</td>
<td>Oberer Grenzwert überschritten</td>
<td></td>
</tr>
<tr>
<td>100 mV</td>
<td>27648</td>
<td>6C00</td>
<td>100 %</td>
<td>Nennbereich</td>
</tr>
<tr>
<td>50 mV</td>
<td>13824</td>
<td>3600</td>
<td>50 %</td>
<td>-</td>
</tr>
<tr>
<td>0 mV</td>
<td>0</td>
<td>0</td>
<td>0 %</td>
<td>-</td>
</tr>
<tr>
<td>-0,0036 mV</td>
<td>-1</td>
<td>FFFF</td>
<td>Untersteuerungsbereich</td>
<td></td>
</tr>
<tr>
<td>-10 mV</td>
<td>-2765</td>
<td>F533</td>
<td>-10 %</td>
<td>(9481/..)</td>
</tr>
<tr>
<td>-117,6 mV</td>
<td>-32511</td>
<td>8101</td>
<td>-117,6%</td>
<td>(9482/..)</td>
</tr>
<tr>
<td><</td>
<td>*1)</td>
<td>*1)</td>
<td>-</td>
<td>Unterer Grenzwert unterschritten</td>
</tr>
</tbody>
</table>

Kurzschluss kann bei Widerstands- und mV Messung nicht erkannt werden!

*1) Übertragener Wert abhängig von parametriertem Verhalten im Fehlerfall:

<table>
<thead>
<tr>
<th>Parametriertes Verhalten im Fehlerfall</th>
<th>Fehlerfall</th>
<th>Im Fehlerfall übertragener Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Halten</td>
<td>Alle IO-Modul Fehler</td>
<td>Letzter gültiger Wert</td>
</tr>
<tr>
<td>Status Code</td>
<td>Kurzschluss *2)</td>
<td>+ / - 32767 7FFF / 8001</td>
</tr>
<tr>
<td>Globale Auswertung zur Statusbildung im AS für alle AI Signale:</td>
<td>Leitungsbruch *2)</td>
<td>+ / - 32762 7FFA / 8006</td>
</tr>
<tr>
<td>Signal ist gestört wenn Wert >= 32512 oder Wert <= -32512</td>
<td>Oberer Grenzwert überschritten</td>
<td>32761 7FF9</td>
</tr>
<tr>
<td>siehe auch 3.4.1 Verhalten der Eingabesignale im Fehlerfall</td>
<td>Unterer Grenzwert unterschritten</td>
<td>-32760 8008</td>
</tr>
<tr>
<td>Fehler Vergleichsstelle</td>
<td>Fehler bei 2 Leiter Abgleich</td>
<td>-32752 8010</td>
</tr>
<tr>
<td>IO-Modul meldet sich nicht</td>
<td>Konfig. ungleich Baugruppe</td>
<td>-32735 8021</td>
</tr>
<tr>
<td>Daten nicht verfügbar</td>
<td>Hardwarefehler IO-Modul</td>
<td>-32734 8022</td>
</tr>
</tbody>
</table>

*2) abhängig von der Richtung der Signaländerung beim jeweiligen Fehlerfall wird ein positiver oder negativer Status code verwendet:

<table>
<thead>
<tr>
<th>Fehlerart</th>
<th>TIM R 9480/..</th>
<th>TIM 9482/.. (R Messung)</th>
<th>TIM mV 9481/..</th>
<th>TIM 9482/.. (mV Messung)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kurzschluss</td>
<td>-32767 (8001)</td>
<td>nicht erkennbar</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Leitungsbruch</td>
<td>+32762 (7FFA)</td>
<td></td>
<td>-32762 (8006)</td>
<td></td>
</tr>
</tbody>
</table>

Der Leitungsabgleich bei Verwendung der 2 Leiter Schaltung und Modul TIM R 9480/.. und TIM 9482/.. erfolgt bei 9440 CPM über die Bedienschnittstelle des CPM.

Bei 9442 CPUs ist die automatische 2 Leiter Kalibrierung der TIM Module durch Kurzschluss am Leitungs-ende zu verwenden. Details siehe Betriebsanleitung der TIM Module.
Kopplungsbeschreibung PROFIBUS DP

Datenwertaufbau zyklische Analog Daten TIM 9482/.. mit Signal Status

<table>
<thead>
<tr>
<th>Typ</th>
<th>Byte</th>
<th>Daten / Kanal</th>
<th>Var. Type</th>
<th>Verwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>I0</td>
<td>INT 16</td>
<td>Analog Input Daten</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>I1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>I2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>I3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>I4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>I5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>I6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>16</td>
<td>I7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>S0 - S7</td>
<td>INT 16</td>
<td>Signal Stati 0-7</td>
<td>0=Signal gestört, 1=Signal OK</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Betriebsanleitung

IS1+ PROFIBUS 3.00 D - Technische Änderungen vorbehalten
Kopplungsbeschreibung PROFIBUS DP

3.3.1.3 AOM, AOMH (9465/..., 9466/..., 9468/...)

0 – 20 mA

<table>
<thead>
<tr>
<th>Meßbereich 0 – 20 mA</th>
<th>Einheiten</th>
<th>%</th>
<th>Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>dezimal</td>
<td>hexadezimal</td>
<td></td>
</tr>
<tr>
<td>*1)</td>
<td>>30137</td>
<td>>75B9</td>
<td>109%</td>
</tr>
<tr>
<td>21,8 mA</td>
<td>30137</td>
<td>75B9</td>
<td>Übersteuerungsbereich</td>
</tr>
<tr>
<td>20 mA</td>
<td>27648</td>
<td>6C00</td>
<td>100%</td>
</tr>
<tr>
<td>10 mA</td>
<td>13824</td>
<td>3600</td>
<td>50%</td>
</tr>
<tr>
<td>0 mA</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>0 mA</td>
<td>< 0</td>
<td>< 0</td>
<td></td>
</tr>
</tbody>
</table>

4 – 20 mA

<table>
<thead>
<tr>
<th>Meßbereich 4 – 20 mA</th>
<th>Einheiten</th>
<th>%</th>
<th>Bereich</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dezimal</td>
<td>Hexadezimal</td>
<td></td>
</tr>
<tr>
<td>*1)</td>
<td>>30759</td>
<td>>7827</td>
<td>111,25%</td>
</tr>
<tr>
<td>21,8 mA</td>
<td>30759</td>
<td>7827</td>
<td>Übersteuerungsbereich</td>
</tr>
<tr>
<td>20 mA</td>
<td>27648</td>
<td>6C00</td>
<td>100%</td>
</tr>
<tr>
<td>12 mA</td>
<td>13824</td>
<td>3600</td>
<td>50%</td>
</tr>
<tr>
<td>4 mA</td>
<td>0</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>3,999 mA</td>
<td>-1</td>
<td>FFFF</td>
<td>Untersteuerungsbereich</td>
</tr>
<tr>
<td>0 mA</td>
<td>-6912</td>
<td>E500</td>
<td>-25%</td>
</tr>
<tr>
<td>0 mA</td>
<td>< -6912</td>
<td>< E500</td>
<td></td>
</tr>
</tbody>
</table>

*1) : Das AOM versucht den Strom entsprechend dem Steuerwert weiter zu erhöhen. Abhängig vom Bürdenwiderstand wird hierbei jedoch die maximale Ausgangsspannung des AOM erreicht, wodurch eine weitere Erhöhung des Stromes nicht mehr möglich ist.

Sicherheitsstellung nach Power On:
Nach Power On der CPU wird in den Datenbereich der Output Signale der Wert -32768 (0x8000) als Kennung für die Sicherheitsstellung der Outputsignale eingetragen. Die Output Signale verbleiben so lange in Sicherheitsstellung, bis das zugehörige Register mit einem gültigen Ausgabewert (<> -32768 (0x8000)) vom AS, IS1+ DTM oder von IS Wizard überschrieben wird.

(siehe auch Kapitel 3.4.2)
Kopplungsbeschreibung PROFIBUS DP

Datenwortaufbau zyklische Analog Daten AOM 9460/..., AOMH 9461/..., AUMH 9468/.. (No Stat)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Betriebsart</th>
<th>Var. Typ</th>
<th>Signale</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8AO</td>
<td>8AO+4HV</td>
<td>8AO+8HV</td>
</tr>
<tr>
<td>1 - 4</td>
<td>HV-P1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 - 8</td>
<td>HV-P2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 - 12</td>
<td>HV-P3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 - 16</td>
<td>HV-P4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 - 20</td>
<td></td>
<td></td>
<td>HV-P5</td>
</tr>
<tr>
<td>21 - 24</td>
<td></td>
<td>HV-P6</td>
<td></td>
</tr>
<tr>
<td>25 - 28</td>
<td></td>
<td>HV-P7</td>
<td></td>
</tr>
<tr>
<td>29 - 32</td>
<td></td>
<td>HV-P8</td>
<td></td>
</tr>
</tbody>
</table>

Input

- 1 - 4: 8AO
- 5 - 8: 8AO+4HV
- 9 - 12: 8AO+8HV
- 13 - 16: HART Variablen übertragen auf Positionen P1 - P8
- 17 - 20: Float 32

Output

- 1 - 2: AO 0
- 3 - 4: AO 1
- 5 - 6: AO 2
- 7 - 8: AO 3
- 9 - 10: AO 4
- 11 - 12: AO 5
- 13 - 14: AO 6
- 15 - 16: AO 7

Signale

- Analog Ausgangssignale AO 0 – AO 7
3.3.2 DIM, DIM+CF, DIOM
(9470/.. 9471/.. 9472/..)

Bei den Baugruppen 9470, 9471 und 9472 können ein Teil der verfügbaren 16 Kanäle optional als Digitaleingang (DI), Zähler- (C) oder Frequenzeingang (F) verwendet werden. Durch Auswahl verschiedener Modulbeschreibungen aus der GSD-Datei kann bei der Konfigurierung des DP Masters der im zyklischen Datenverkehr übertragene Datenbereich sowie das PROFIBUS KennungsfORMAT gewählt werden:

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>DIM 16 (9470/.. , 9471/..)</td>
<td>2 (16 Bit DI)</td>
<td>-</td>
<td>-</td>
<td>DI ohne Status</td>
<td>AKF</td>
</tr>
<tr>
<td>9470 /.. -16-1. DIM 16 ...</td>
<td>4 (16 Bit DI + 16 Bit Status)</td>
<td>-</td>
<td>-</td>
<td>DI mit Status</td>
<td></td>
</tr>
<tr>
<td>9471 /.. -16-1. DIM 16 ...</td>
<td>8 (16 Bit DI + 16 Bit Status + 2 Worte CF)</td>
<td>1</td>
<td>14 – 15</td>
<td>DI und CF (Counter oder Frequenz) mit Status</td>
<td></td>
</tr>
<tr>
<td>9470/3x-16-xx 9471/35-16-xx 9472/35-16-xx</td>
<td>DIM 16</td>
<td>4</td>
<td>0</td>
<td>DI mit Status</td>
<td></td>
</tr>
<tr>
<td>DI/DO 16</td>
<td>4</td>
<td>2</td>
<td>-</td>
<td>DI oder DO mit Status</td>
<td></td>
</tr>
<tr>
<td>DI/DO 16+2CF</td>
<td>8</td>
<td>4</td>
<td>14 - 15</td>
<td>DI und CF oder DO mit Status</td>
<td></td>
</tr>
<tr>
<td>DI/DO 16+6CF</td>
<td>16</td>
<td>4</td>
<td>10 - 15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DI/DO 16+8CF</td>
<td>20</td>
<td>4</td>
<td>8 - 15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AKF: Allgemeines KennungsfORMAT
SKF: Spezielles KennungsfORMAT (Wird nicht von allen DP Mastern unterstützt, sollte jedoch bevorzugt verwendet werden.)

DI Signalzuordnung (Parameter ´Invertiere Eingang/Signal x = Nein´):

<table>
<thead>
<tr>
<th>9470/ ..</th>
<th>9471 / ..</th>
</tr>
</thead>
<tbody>
<tr>
<td>I < 0,05 mA</td>
<td>-</td>
</tr>
<tr>
<td>I < 1,2 mA</td>
<td>U < 5 V</td>
</tr>
<tr>
<td>I > 2,1 mA</td>
<td>U > 13 V</td>
</tr>
<tr>
<td>R_L < 100 Ohm</td>
<td>-</td>
</tr>
</tbody>
</table>

Auch in den Betriebsarten mit CF (Zähler/Frequenz) werden die DI Signale im DI Datenbereich aktualisiert und sind somit auch in dieser Betriebsart als DI Signale nutzbar.

Statuszuordnung:

<table>
<thead>
<tr>
<th>Status Bit</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>gestört</td>
</tr>
<tr>
<td>1</td>
<td>OK</td>
</tr>
</tbody>
</table>

Signale und Stati werden synchron und konsistent generiert und übertragen wenn Parameter ´Fehlerüberwachung´ = Ein
Kopplungsbeschreibung PROFIBUS DP

<table>
<thead>
<tr>
<th>Daten</th>
<th>Byte</th>
<th>alle DIM (947x/3x im Kompatiblen Mode)</th>
<th>DIOM 9470/3x, 9471/35, 9472/35 (IS1+)</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>DIM</td>
<td>DIM</td>
<td>DIM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+Stat</td>
<td>+2CF</td>
<td>+2CF</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Input	5 + 6	7 + 8	9 + 10	11+12	13+14	15+16	17+18	19+20					
	C/F I14	C/F I15	C/F I14	C/F S15	C/F S14	C/F S15	C/F S13	C/F S12	C/F S12	C/F S11	C/F S10	C/F S9	

<table>
<thead>
<tr>
<th>Output</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5 + 6</th>
<th>7 + 8</th>
<th>9 + 10</th>
<th>11+12</th>
<th>13+14</th>
<th>15+16</th>
<th>17+18</th>
<th>19+20</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reset C14-15</td>
<td>Start/Stop C14-15</td>
<td>Reset C10-15</td>
<td>Start/Stop C10-15</td>
<td>Reset C8-15</td>
<td>Start/Stop C8-15</td>
</tr>
</tbody>
</table>

1) Bei Betriebsart DI/DO und Parametrierung als DO werden geschriebene Signalwerte über die zugehörigen DI Signale als Readback zurück geliefert.

Bei Betriebsart DI/DO und Parametrierung als DI haben zugehörige DO Signale keine Wirkung.

2) Output Daten DI/DO+xCF:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>0 = Ausgang ist hochohmig (Aktor = Aus)</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1 = Ausgang wird gespeist (Aktor = Ein)</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Start/Stop</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Start/Stop</td>
</tr>
<tr>
<td>4 - 7</td>
<td></td>
<td>0 (Reserviert)</td>
</tr>
</tbody>
</table>

2) Output Daten DIM+2CF:
Kopplungsbeschreibung PROFIBUS DP

Betriebsart ‘Zähler’

Zähleweise: Inkrementierend / dekrementierend mit Überlauf / Unterlauf
Zählerereignis: Positive / Negative Flanke wählbar.
Verhalten im Fehlerfall: Halten letzter Wert (Initialisierungswert 0)
Diagnosen: Wertstatus und Kanaldiagnose
Reset: Rücksetzen des Zählregisters auf ‘0’
Start/Stop: Bei ‘Stop’ werden Eingangsimpulse verworfen. Das Register wird nicht inkrementiert.

<table>
<thead>
<tr>
<th>alle DIM mit Zähler (9470/3x im komp. Mode)</th>
<th>DIOM 9470/3x (IS1+)</th>
<th>Zählbereich</th>
<th>Zählerereignis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zähler 16 Bit</td>
<td>UINT16 0 – 65535</td>
<td>Inkrement bei Flanke</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Up/Down Counter 16 Bit</td>
<td>Inkrement / Dekrement abhängig von Drehrichtung</td>
<td></td>
</tr>
<tr>
<td>-</td>
<td>Up/Down Counter 32 Bit</td>
<td>0 – 4.294.967.295</td>
<td></td>
</tr>
</tbody>
</table>

Zähl- bzw. Drehrichtungs-Erkennung:

Für Zähler und Frequenzmessungen mit Drehrichtungserkennung bilden jeweils zwei DI Eingänge ein Paar. Über den Phasenversatz zweier Sensorsignale wird die Drehrichtung ermittelt. Die mechanische Anordnung der Sensoren muss so gewählt werden, dass sich jeweils zwei Pulse überlappen.

<table>
<thead>
<tr>
<th>Betriebsart</th>
<th>Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up/Down Counter</td>
<td>Aufwärts oder abwärts zählen der Eingangsimpulse abhängig von der Drehrichtung</td>
</tr>
<tr>
<td>Frequenz mit Richtung</td>
<td>Drehzahl und Drehrichtungserkennung für rotierende Maschinen</td>
</tr>
</tbody>
</table>

Signalzuordnung in zyklischen Input Daten in Betriebsart Up/Down Counter oder Frequenz mit Richtung:

<table>
<thead>
<tr>
<th>Input Daten</th>
<th>Anwendung</th>
</tr>
</thead>
<tbody>
<tr>
<td>erstes DI Bit eines Paares</td>
<td>Digitaler Wert des ersten Eingangs.</td>
</tr>
</tbody>
</table>
| zweites DI Bit eines Paares | Drehrichtung
0 = Rechts / vorwärts (Puls an erstem Eingang eines Paares kommt zu erst)
1 = Links / Rückwärts (Puls an zweitem Eingang eines Paares kommt zu erst) |
Kopplungsbeschreibung PROFIBUS DP

Signale und Status bei Betriebsart ´Zähler´:
Zähler werden beim Hochlauf des IO-Moduls auf ´0´ gesetzt.
Der Signalstatus wird mit ´0´ = Signal gestört initialisiert.
Über das Reset Bit im Steuerregister wird das Zählerregister auf ´0´ gesetzt und der Signalstatus auf ´1´ = Signal OK gesetzt.
Beim Auftreten von Fehlerereignissen (Kurzschluss, Leitungsunterbrechung, Busausfall...) wird der Signalstatus auf ´0´ gesetzt und bis zum nächsten Reset auf ´0´ gehalten. Eine Störung eines Zählvorganges ist somit über den Signalstatus erkennbar.
Beim Verlust des Data Exchange mit dem AS und Wiederkehr innerhalb der Haltezeit für Ausgabemodule oder bei CPU Redundanz Umschaltung wird der Zählvorgang nicht gestört.
Bei Betrieb eines Eingangspaares als Up/Down Counter oder Frequenz mit Richtung wird bei einem Signal Fehler eines der beiden Eingänge die Statusbits beider Eingänge auf 0 = gestört gesetzt.

32 Bit Zähler mit Richtungseingang:

Betriebsarten ´Frequenzmessung´

<table>
<thead>
<tr>
<th>Modul</th>
<th>Max. Anz. Signale je Modul</th>
<th>Betriebsart</th>
<th>Messmethode</th>
<th>Skalierung [Hz / Bit]</th>
<th>Auflösung [Hz]</th>
</tr>
</thead>
<tbody>
<tr>
<td>alle DIM mit Frequenzmessung (9470/3x im komp. Mode)</td>
<td>2</td>
<td>Frequenz 1 Hz - 1 kHz</td>
<td>Flankenmessung</td>
<td>0,05</td>
<td>+/- 0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequenz 20 Hz - 20 kHz</td>
<td>Torzeit 50 ms</td>
<td>1</td>
<td>+/- 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequenz 5 Hz - 20 kHz</td>
<td>Torzeit 200 ms</td>
<td>1</td>
<td>+/- 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequenz 1 Hz - 20 kHz</td>
<td>Torzeit 1 s</td>
<td>1</td>
<td>+/- 1</td>
</tr>
<tr>
<td>DIOM 9470/3x, 9471/35, 9472/35 (IS1+)</td>
<td>8</td>
<td>Frequenz 0,1 - 600 Hz</td>
<td>Flankenmessung</td>
<td>0,01</td>
<td>+/- 0,01</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequenz 1 Hz - 3 kHz</td>
<td></td>
<td>0,05</td>
<td>+/- 0,05</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Frequenz 1 Hz - 20 kHz</td>
<td></td>
<td>0,5</td>
<td>+/- 0,5</td>
</tr>
<tr>
<td></td>
<td>4 Paare</td>
<td>Frequenz 1 Hz - 20 kHz mit Richtung</td>
<td>Flankenmessung</td>
<td>0,5</td>
<td>+/- 0,5</td>
</tr>
</tbody>
</table>
Signalskalierung:

<table>
<thead>
<tr>
<th>alle DIM mit Frequenzmessung (9470/3x im kompatiblen Mode):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messbereiche</td>
</tr>
<tr>
<td>1 Hz – 1 kHz</td>
</tr>
<tr>
<td>1,3 kHz</td>
</tr>
<tr>
<td>1,1 kHz</td>
</tr>
<tr>
<td>1 kHz</td>
</tr>
<tr>
<td>500 Hz</td>
</tr>
<tr>
<td>0 Hz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIOM 9470/3x, 9471/35, 9472/35 (IS1+)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Messbereiche</td>
</tr>
<tr>
<td>0,1 Hz – 600 Hz</td>
</tr>
<tr>
<td>> 655,34 Hz</td>
</tr>
<tr>
<td>655,34 Hz</td>
</tr>
<tr>
<td>600 Hz</td>
</tr>
<tr>
<td>440 Hz</td>
</tr>
<tr>
<td>400 Hz</td>
</tr>
<tr>
<td>500 Hz</td>
</tr>
<tr>
<td>0 Hz</td>
</tr>
</tbody>
</table>

*1) Skalierung der Frequenzmessungen in IS1+ DTM und I.S.Wizard:

| alle DIM mit Frequenzmessung außer 9470/3x | Phys 0 – 100% entspricht Digital 0 – 20000 |
| DIOM 9470/3x (IS1+) | Phys 0 – 100% entspricht Digital 0 – 40000 |

Signalverhalten im Fehlerfall: Halten letzter Wert (Initialisierungswert 0)
Diagnose: Signalstatus und Kanaldiagnose

Verhalten bei Frequenzüberschreitung:
Bei Eingangsfrequenzen größer dem Maximum des eingestellten Messbereiches können nicht mehr alle Eingangsimplusse sicher erkannt werden. Es gehen Impulse bei der Auswertung verloren, wodurch der vom Modul ermittelte Messwert kleiner als die real vorhandene Eingangs frequenz ist. Es erfolgt keine Diagnose Meldung.

Signal Filterung:
Eine Glättung des Signal Jitter der gemessenen Frequenzwerte kann bei DIOM 9470/3x per Parametrierung gewählt werden. Zusätzlich erfolgt eine Impulsverlängerung für die zugehörigen DI Signale.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Auswahl</th>
<th>Impulsverlängerung für DI Signale</th>
<th>Filterkonstante / Glättung für Frequenzmessungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impulsverlängerung / Frequenz Filter.</td>
<td>0 s / Aus</td>
<td>0 s</td>
<td>Aus</td>
</tr>
<tr>
<td>0,6 s / Klein</td>
<td>0,6 s</td>
<td>Klein</td>
<td></td>
</tr>
<tr>
<td>1,2 s / Mittel</td>
<td>1,2 s</td>
<td>Mittel</td>
<td></td>
</tr>
<tr>
<td>2,4 s / Groß</td>
<td>2,4 s</td>
<td>Groß</td>
<td></td>
</tr>
</tbody>
</table>
Kopplungsbeschreibung PROFIBUS DP

Impulsverlängerung:
Diese Funktion dient zum Verlängern von kurzen Impulsen. Damit kann z. B. eine kurze Betätigung eines manuellen Tasters (Zeitdauer ca. 10 ... 50 ms) auf eine bei der Parametrierung wählbare Zeit (T = 0,6 Sek., 1,2 Sek., 2,4 Sek.) verlängert werden.
Kurze Tasterbedienungen bzw. Pulse können damit vom AS auch bei langsameren Zykluszeiten der Anwendersoftware sicher erkannt werden.

Impulsverlängerung im nicht invertierten Betrieb:
(Parameter ´Invertiere Eingänge des Moduls´ = Nein)

Pulse welche länger sind als die parametrierte Zeit T, werden nicht verlängert.
Kurze Pulse während Ablauf der Zeit T werden unterdrückt.

Impulsverlängerung im invertierten Betrieb:
(Parameter ´Invertiere Eingänge des Moduls´ = Ja)

Signalanzeige:
Bei DIOM mit Signal LEDs wird das verlängerte ´Signal zu AS´ an den LEDs angezeigt.
3.3.3 DOM (9475/.., 9477/.., 9478/..)

Signalzuordnung

<table>
<thead>
<tr>
<th>Daten</th>
<th>Byte</th>
<th>Bit</th>
<th>DOM 8 + Status</th>
<th>DOM 4 + Status</th>
<th>DOM 8</th>
<th>DOM 6</th>
<th>DOM 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>9475/3x</td>
<td>9475/3x</td>
<td>9477/12-06-12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input</td>
<td>1</td>
<td>0</td>
<td>Status_S0</td>
<td>Status_S0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>Status_S1</td>
<td>Status_S1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>Status_S2</td>
<td>Status_S2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>Status_S3</td>
<td>Status_S3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>Status_S4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>Status_S5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Status_S6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>Status_S7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0 – 7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Output</td>
<td>1</td>
<td>0</td>
<td>DO 0</td>
<td>DO 0</td>
<td>DO 0</td>
<td>DO 0</td>
<td>DO 0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>DO 1</td>
<td>DO 1</td>
<td>DO 1</td>
<td>DO 1</td>
<td>DO 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>DO 2</td>
<td>DO 2</td>
<td>DO 2</td>
<td>DO 2</td>
<td>DO 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3</td>
<td>DO 3</td>
<td>DO 3</td>
<td>DO 3</td>
<td>DO 3</td>
<td>DO 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>DO 4</td>
<td>-</td>
<td>DO 4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>DO 5</td>
<td>-</td>
<td>DO 5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>DO 6</td>
<td>-</td>
<td>DO 6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>DO 7</td>
<td>-</td>
<td>DO 7</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Signalbit

<table>
<thead>
<tr>
<th>Signalbit = 0</th>
<th>Signalbit = 1</th>
<th>Typ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ausgang ist hochohmig (Aktor = Aus)</td>
<td>Ausgang wird gespeist gemäß Typspezifikation (Aktor = Ein)</td>
<td>DOM</td>
</tr>
<tr>
<td>Relaiskontakt = offen</td>
<td>Relaiskontakt = geschlossen</td>
<td>DOMR</td>
</tr>
<tr>
<td>Ventil geschlossen</td>
<td>Ventil offen</td>
<td>DOMV</td>
</tr>
</tbody>
</table>

Status Bit

<table>
<thead>
<tr>
<th>Status Bit</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>gestört</td>
</tr>
<tr>
<td>1</td>
<td>OK</td>
</tr>
</tbody>
</table>
3.4 Signalverhalten im Fehlerfall
3.4.1 Verhalten der Eingabesignale im Fehlerfall

Kann durch eine Störung (Kurzschluss, Drahtbruch, Baugruppendefekt ...) kein gültiger Signalwert gebildet werden, so wird eine Diagnoseinformation erzeugt und zum Master übertragen. Trotz bestehender Störung werden weiterhin zyklische Daten einschließlich Signal Status zum Master übertragen.

Das Verhalten der im Störfall übertragenen Signalwerte kann durch Parametrierung für jedes Modul separat gewählt werden (siehe IO-Modul Parameter).

Applikationsempfehlung:

Wird das Verhalten der Eingabesignale durch das IS1+ System realisiert, so ist dieses Verhalten aus Sicht der Applikationssoftware im Automatisierungssystem jedoch nur bei ungestörtem Betrieb des PROFIBUS DP gewährleistet. Bei Ausfall des PROFIBUS sind zusätzlich projektspezifische Reaktionen der Applikationssoftware zu realisieren. Um ein durchgängiges Verhalten der Eingangssignale im Fehlerfall zu gewährleisten empfehlen wir folgendes Vorgehen:

Generieren eines Statussignales für jedes Eingabesignal im Automatisierungssystem:

- Bei DI Signalen sowie bei allen Signalen von IS1+ IO-Modulen (FW 03-xx) werden die optional von IS1+ zur Verfügung stehenden Signalstatus Bits im zyklischen Datenbereich verwendet.
- Bei AI Signalen von IS1+ IO-Modulen (FW 02-xx) kann optional das Verhalten 'Status Code' parametrier und in der Applikationssoftware in AS abgeprüft werden:

```
If SignalValue >= 32512  or  SignalValue <= -32512 then
    SignalStatusBit = gestört
Else
    SignalStatusBit = OK
End IF
```

Gesteuert über das jeweilige Statusbit kann nun im Automatisierungssystem das Signalverhalten im Fehlerfall (Einfrieren, Ersatzwert ...) realisiert werden.

In diesem Fall kann das Ereignis 'Slaveausfall auf PROFIBUS DP' mit dem Signalstatus verknüpft werden wodurch das Signalverhalten im Fehlerfall unter allen Fehlerbedingungen immer gleich anspricht.

Die zusätzlich im Diagnosetelegramm liegenden Detailinformationen können optional ausgewertet und z. B. in Meldelisten angezeigt werden, welche zur Unterstützung des Wartungspersonals dienen.
3.4.2 Verhalten der Ausgabesignale im Fehlerfall

Kommunikationsfehler zwischen Master und IS1+ Feldstation:
Der zyklische Datenverkehr zwischen dem Klasse 1 Master und der IS1+ wird in der IS1+ durch eine Ansprechüberwachung geprüft.
Die Ansprechüberwachung sorgt in der CPU dafür, dass bei einem Ausfall des Masters oder bei sonstigem Kommunikationsverlust zum Master nach Ablauf der Zeit (T_{WD}) die Ausgänge den sicheren Zustand einnehmen.
Die Zeit T_{WD} ist im Klasse 1 Master im Bereich 10 ms bis 650 Sekunden parametrierbar und wird mittels des DP - Dienstes "SET_PARAMETER" vom Master an die CPU übergeben.
Nach Ablauf von T_{WD} wird die zyklische Aktualisierung der Ausgabe Module von der CPU der IS1+ Feldstation eingestellt.

Kommunikationsfehler zwischen CPU und Output Modul:
Auf den Ausgabe Modulen befinden sich Watchdog - Schaltungen, welche die Datenübertragung zwischen der CPU und den Ausgabe Modulen überwachen. Bekommt ein Ausgabe Modul länger als T_{MOD} keine gültigen Daten übermittelt, geht die Baugruppe in Sicherheitsstellung.
T_{MOD} ist im DP Master parametrierbar im Bereich 100 ms bis 25,5 Sek. (Defaultwert: 100 ms).

Die Sicherheitsstellung der Ausgabe Module erfolgt somit mit einer Verzögerung T_S nach Ausfall der Kommunikation zum Master von

$$T_S = T_{WD} + T_{MOD}$$

Die Sicherheitsstellung der Ausgabesignale ist für jedes Modul separat parametrierbar (siehe 3.2.2 IO-Modul Parameter).

PROFIBUS Failsafe Mode Support: Verhalten verschiedener IS1+ CPUs im DP Clear Mode.

<table>
<thead>
<tr>
<th>IS1+ GSD</th>
<th>Failsafe Mode</th>
<th>GSD: Fail_safe =</th>
<th>Zyklische Daten von DP Master am DP Bus im Clear Mode</th>
<th>Global Control Clear</th>
<th>Sicherheitsstellung der Output Signale in IS1+ parametrierbar</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2.xx</td>
<td>Ohne</td>
<td>0</td>
<td>Länge Output Daten unverändert. Alle Ausgangssignale = 0</td>
<td>Ja</td>
<td>9440 CPM: Ja</td>
</tr>
<tr>
<td>V3.xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9442 CPU: Nein Ausgangssignale = 0</td>
</tr>
<tr>
<td>V4.xx</td>
<td>Mit</td>
<td>1</td>
<td>Länge Output Daten Telegramm = 0</td>
<td>Ja</td>
<td>9442 CPU: Ja</td>
</tr>
<tr>
<td>V5.xx</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bei der 9442 CPU werden bei Verwendung von GSD V2.xx und V3.xx im DP Clear Mode alle Ausgangssignale auf den Wert ‘0’ gesetzt unabhängig von den in den IS1+ Parametern projektierten Sicherheitsstellungen.
Bei Verwendung der 9440 CPM oder der 9442 CPU mit GSD V4.xx und V5.xx werden die projektierten Sicherheitsstellungen der Ausgabesignale korrekt bearbeitet.
3.5 HART Variablen

HART Feldgeräte bieten zusätzlich zum analogen Prozesswert die Möglichkeit bis zu vier Prozessvariablen (HART Variablen HV) digital vom Transmitter zu lesen. IS1+ bietet die Möglichkeit solche HART Variable in den zyklischen Input Datenbereich von PROFIBUS abzubilden. Optional können keine, vier oder acht HART Variable eines IS1+ HART Moduls (AIMH, AUMH, UMH, AOMH) zusätzlich zu den zyklischen Daten übertragen werden.

Dies kann bei der Konfiguration einer Feldstation über die GSD Datei, IS1+ DTM oder IS Wizard optional ausgewählt werden:

Speisung der HART Geräte beim Analog Universal Modul AUMH 9468/3x und UMH 9469

3.5.1 Modul Auswahl in GSD File / IS1+ DTM / IS Wizard

<table>
<thead>
<tr>
<th>Modul Auswahltext</th>
<th>Länge zyklische Daten [Byte]</th>
<th>Anzahl der übertragenen HART Variablen (HV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input</td>
<td>Output</td>
</tr>
<tr>
<td>9461/12-08-11 AIMH8 2w Exi</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>9461/12-08-11 AIMH8+4HV 2w Exi</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>9461/12-08-11 AIMH8+8HV 2w Exi</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>9461/12-08-21 AIMH8 Exi</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>9461/12-08-21 AIMH8+4HV Exi</td>
<td>32</td>
<td>0</td>
</tr>
<tr>
<td>9461/12-08-21 AIMH8+8HV Exi</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>9466/12-08-11 AOMH8 Exi</td>
<td>0</td>
<td>16</td>
</tr>
<tr>
<td>9466/12-08-11 AOMH8+4HV Exi</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>9466/12-08-11 AOMH8+8HV Exi</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td>9468/3x-08-xx 8AIH +4HV</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>9468/3x-08-xx 8AOH +4HV</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>9468/3x-08-xx 8AIH/8AOH +4HV</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>9468/3x-08-xx 8AIH +8HV</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>9468/3x-08-xx 8AOH +8HV</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>9468/3x-08-xx 8AIH/8AOH +8HV</td>
<td>50</td>
<td>16</td>
</tr>
<tr>
<td>9469/35-08-xx 8IH +4HV Exn</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>9469/35-08-xx 8OH +4HV Exn</td>
<td>18</td>
<td>16</td>
</tr>
<tr>
<td>9469/35-08-xx 8IH/8OH +4HV Exn</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>9469/35-08-xx 8IH +8HV Exn</td>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>9469/35-08-xx 8OH +8HV Exn</td>
<td>34</td>
<td>16</td>
</tr>
<tr>
<td>9469/35-08-xx 8IH/8OH +8HV Exn</td>
<td>50</td>
<td>16</td>
</tr>
</tbody>
</table>
3.5.2 Datenformat

HART Variable werden als IEEE Floatingpoint Zahlen übertragen (4 Byte).
Kann eine HART Variable nicht gelesen werden (z.B. HART Gerät im Anlauf, nicht angeschlossen, defekt, HART Variable ist nicht vorhanden, ...) so wird der Wert 7F A0 00 00 (Not a Number) übertragen. Dies kann im AS zur Bildung eines Signalstatus der HART Variablen ausgewertet werden. Detaillierte Status- und Diagnoseinformationen der HART Feldgeräte sind über HART Management Systeme auswertbar.

3.5.3 Auswahl der HART Variablen

An einem HART Modul von IS1+ können bis zu 8 HART Feldgeräte angeschlossen werden. Da jedes HART Feldgerät bis zu 4 Variablen besitzen kann sind somit maximal 32 HART Variable je Modul in den HART Devices möglich.
Per Parametrierung kann die Zuordnung von 4 oder 8 aus diesen 32 Variablen zu den Positionen P1 bis P8 im zyklischen Übertragungsbereich gewählt werden:

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Wertebereich</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 1</td>
<td>0 ... 7, Nicht verwendet</td>
<td>Auswahl der Kanal Nr. (Eingang / Ausgang Nr.) des HART Moduls an den das HART Feldgerät angeschlossen ist, welches auf Pos.1 übertragen werden soll. Bei Auswahl von ‘Not Used’ wird der Wert ‘Not a Number’ (7F A0 00 00) übertragen.</td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 2</td>
<td></td>
<td>Auswahl für Pos. 2</td>
</tr>
<tr>
<td>Eingang Nr. HART Gerät für Pos. 3 (8)</td>
<td></td>
<td>Auswahl für Pos. 4 (8)</td>
</tr>
<tr>
<td>HART Variable für Pos. 1</td>
<td>1 ... 4</td>
<td>Auswahl der Variablen des HART Feldgerätes, welches auf Pos.1 übertragen werden soll.</td>
</tr>
<tr>
<td>HART Variable für Pos. 2</td>
<td></td>
<td>Auswahl für Pos. 2</td>
</tr>
<tr>
<td>HART Variable für Pos. 3 (8)</td>
<td></td>
<td>Auswahl für Pos. 4 (8)</td>
</tr>
</tbody>
</table>
3.6 Diagnosedaten

Abhängig vom unterstützten Diagnoseformat des verwendeten Automatisierungssystems kann IS1+ Diagnosedaten in Datenformaten gemäß DPV0 oder DPV1 Spezifikation übertragen. Die Auswahl erfolgt über die Verwendung der zugehörigen GSD Datei:

<table>
<thead>
<tr>
<th>PROFIBUS DP Diagnose Format gemäß Spez.</th>
<th>DPV1 Alarms</th>
<th>GSD Datei Version</th>
<th>GSD Datei Name</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>DPV0</td>
<td>-</td>
<td>V2.xx</td>
<td>STA2049A.gsg</td>
<td>9440</td>
</tr>
<tr>
<td>DPV1</td>
<td>-</td>
<td>V3.xx</td>
<td>STA3049A.gsg</td>
<td>9442</td>
</tr>
<tr>
<td>DPV0</td>
<td>-</td>
<td>V4.xx</td>
<td>S4xx049A.GSG</td>
<td>-</td>
</tr>
<tr>
<td>DPV1</td>
<td>optional</td>
<td>V5.xx</td>
<td>S5xx049A.GSG</td>
<td>-</td>
</tr>
</tbody>
</table>

Das Auftreten von Diagnoseänderungen wird von der IS1+ Feldstation im zyklischen Datenaustausch an den Klasse 1 Master gemeldet. Dieser fordert nachfolgend in einem azyklischen Telegramm selbständig die Diagnosedaten von der IS1+ Feldstation an.

Stehen keine Alarms in einer Feldstation an, so werden bei DPV0 nur die genormten 6 Byte Standardinformationen (Byte 0 bis 5) übertragen. Erst bei Auftreten von Alarms werden die zusätzlichen Informationen (ab Byte 6) übertragen. Dies ist bei der Auswertung von Diagnosedaten im AS zu berücksichtigen!

Aufbau der DPV0 Diagnosedaten

<table>
<thead>
<tr>
<th>Byte 0</th>
<th>Stationsstatus 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byte 1</td>
<td>Stationsstatus 2</td>
</tr>
<tr>
<td>Byte 2</td>
<td>Stationsstatus 3</td>
</tr>
<tr>
<td>Byte 3</td>
<td>Master PROFIBUS Adresse</td>
</tr>
<tr>
<td>Byte 4</td>
<td>Herstellerkennung</td>
</tr>
<tr>
<td></td>
<td>0x049A bei IS1</td>
</tr>
<tr>
<td>Byte 5</td>
<td></td>
</tr>
<tr>
<td>Byte 6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte 25</td>
<td></td>
</tr>
<tr>
<td>Byte 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Byte 31</td>
<td></td>
</tr>
<tr>
<td>Byte 32</td>
<td></td>
</tr>
<tr>
<td>Byte 34</td>
<td></td>
</tr>
<tr>
<td>Byte 35</td>
<td></td>
</tr>
<tr>
<td>Byte 37</td>
<td></td>
</tr>
</tbody>
</table>

Standard Diagnoseinformation bei Profibus DP
6 Byte

Gerätebezogene Diagnose IS1+ Feldstation (DPV0)
20 Byte

Kennungsbezogene Diagnose der IS1+ Module
6 Byte

Kanalbezogene Diagnose
3 Byte je gestörten Signal.
Variable Länge bis zur maximalen
Größe des Diagnosetelegrammes der IS1+ Feldstation

weitere Kanaldiagnosen . . .
Kopplungsbeschreibung PROFIBUS DP

Aufbau der DPV1 Diagnosedaten

<table>
<thead>
<tr>
<th>Byte</th>
<th>Inhalt</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Stationsstatus 1</td>
<td>Nach Power On wird nur die Standard diagnose übertragen.</td>
</tr>
<tr>
<td>1</td>
<td>Stationsstatus 2</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Stationsstatus 3</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Master PROFIBUS Adresse</td>
<td>Standard Diagnoseinformation bei Profibus DP 6 Byte</td>
</tr>
<tr>
<td>4-5</td>
<td>High-Byte Herstellerkennung Low-Byte</td>
<td>Kennungsbezogene Diagnose der IS1+ Module 4 Byte</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>CPU Status (DPV1) 8 Byte</td>
</tr>
<tr>
<td>7-8</td>
<td></td>
<td>Modul Status (DPV1) 8 Byte</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>Redundanz Status (DPV1) 8 Byte (wird nur bei PNO Redundanz verwendet)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sonderfälle

- Daten werden in jedem Diagnosetelegramm übertragen wenn Konfig- und Parameter Daten in IS1+ vorliegen.
- Nur wenn Parameter CPU Redundant = Ja
- Daten werden nur in Slot Reihenfolgeübertragen wenn gestörte Signale oder Module vorhanden
- Variable Länge bis zur maximalen Größe des Diagnosetelegrammes der IS1+ Feldstation

*1) wenn Block ‘Redundanz Status‘ nicht übertragen.
Kopplungsbeschreibung PROFIBUS DP

3.6.1 Standard Diagnoseinformation bei Profibus DP

Die ersten 6 Byte eines Diagnosetelegrammes enthalten gemäß PROFIBUS Norm folgende Informationen:

Stationsstatus 1 (Byte 0):

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bedeutung</th>
<th>Abhilfe</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = DP-Slave kann vom DP Master nicht angesprochen werden.</td>
<td>- richtige PROFIBUS Adresse am DP Slave eingestellt?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Busanschlussstecker angeschlossen?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Spannung am der IS1+ Feldstation und den Trennübertragern?</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Feldbus Trennübertrager richtig eingestellt (Baudrate..)</td>
</tr>
<tr>
<td>1</td>
<td>1 = DP-Slave ist für den Datenaustausch noch nicht bereit.</td>
<td>- Abwarten, da die IST+ Station gerade im Hochlauf ist.</td>
</tr>
<tr>
<td>2</td>
<td>1 = Die Konfigurationsdaten des DP Masters wurden von der IS1+ Station abgelehnt.</td>
<td>- richtigen Stationsaufbau der IS1+ Station in der Konfiguration des DP Masters eingeben.</td>
</tr>
<tr>
<td>3</td>
<td>1 = es liegen Diagnosedaten der IS1+ Station vor.</td>
<td>- Die Diagnosedaten können ausgelesen werden.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(globales SammelDiagnosebit für gesamte Feldstation)</td>
</tr>
<tr>
<td>4</td>
<td>1 = Telegrammtyp nicht unterstützt</td>
<td>- Slave kann einen vom Master verwendeten Telegrammtyp nicht beantworten.</td>
</tr>
<tr>
<td>5</td>
<td>1 = DP Master kann die Antwort des Slaves nicht interpretieren.</td>
<td>- Überprüfen Sie die Busphysik</td>
</tr>
<tr>
<td>6</td>
<td>1 = Telegramm „Set Parameter“ wird Von Slave abgelehnt.</td>
<td>- Überprüfen Sie die Parametrierung des Slaves im Master</td>
</tr>
<tr>
<td>7</td>
<td>1 = DP Slave ist von einem anderen DP Master parametriert worden</td>
<td>- ein anderer Master greift auf die IS1+ Station zu (siehe 1.3 Zugriffsverfahren)</td>
</tr>
</tbody>
</table>

Stationsstatus 2 (Byte1):

<table>
<thead>
<tr>
<th>Bit</th>
<th>Bedeutung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1 = DP – Slave muss von Master neu parametriert werden.</td>
</tr>
<tr>
<td>1</td>
<td>1 = Es liegt eine Diagnosemeldung vor. Der Slave kann nicht weiterlaufen, solange der Fehler nicht behoben ist (statische Diagnosemeldung)</td>
</tr>
<tr>
<td>2</td>
<td>Bit ist immer auf „1“ wenn der Slave mit dieser DP Adresse vorhanden ist.</td>
</tr>
<tr>
<td>3</td>
<td>1 = Ansprechüberwachung der IS1+ Feldstation ist aktiviert (Watchdog = On).</td>
</tr>
<tr>
<td></td>
<td>Der zyklische Datenverkehr wird vom Slave überwacht.</td>
</tr>
<tr>
<td>4</td>
<td>1 = Der Slave hat das Steuerkommando „FREEZE“ erhalten. “1”</td>
</tr>
<tr>
<td>5</td>
<td>1 = Der Slave hat das Steuerkommando „SYNC“ erhalten. “1”</td>
</tr>
<tr>
<td>6</td>
<td>0 = Bit ist immer „0“.</td>
</tr>
<tr>
<td>7</td>
<td>1 = DP-Slave ist durch den Master deaktiviert und wird nicht vom Master bearbeitet.</td>
</tr>
</tbody>
</table>

Stationsstatus 3 (Byte2):

| Bit 0 – 6: Reserviert |
| Bit 7: Ext_Diag_Overflow wird gesetzt, wenn mehr Kanaldiagnosen vorliegen als im Diagnosetelegramm übertragen werden können. |

Master PROFIBUS Adresse (Byte 3): PROFIBUS Adresse des Masters, welcher den DP Slave parametriert hat und lesenden und schreibenden Zugriff auf den DP Slave hat.

Herstellerkennung (Byte 4, 5): Die Herstellerkennung ist sowohl im DP-Slave als auch in der zugehörigen GSD-Datei hinterlegt. (0x049A bei IS1)
3.6.2 Kennungsbezogene Diagnose der IS1+ Module

<table>
<thead>
<tr>
<th>Byte</th>
<th>DPV0</th>
<th>DPV1</th>
<th>Bit</th>
<th>Meldung / Funktion</th>
<th>Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>6</td>
<td>-</td>
<td>0</td>
<td>Diagnose in Modul 0 (CPU)</td>
<td>Wert = 0x46 (DPV0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Diagnose in Modul 1</td>
<td>Wert = 0x44 (DPV1)</td>
</tr>
<tr>
<td>27</td>
<td>7</td>
<td></td>
<td>0</td>
<td>Diagnose in Modul 2</td>
<td>0 = alle Signale des IO-Moduls werden ungestört übertragen.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Diagnose in Modul 3</td>
<td>1 = Mindestens ein Signal des IO-Moduls oder gesamtes IO-Modul ist</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Diagnose in Modul 4</td>
<td>gestört.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Diagnose in Modul 5</td>
<td>Durch Statusmeldungen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Diagnose in Modul 6</td>
<td>’Wartungsbedarf’ oder ’Außerhalb Spezifikation’ werden diese Diag-</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Diagnose in Modul 7</td>
<td>nosebits nicht gesetzt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>Diagnose in Modul 8</td>
<td>Weitere Details siehe Gerätespez.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>Diagnose in Modul 9</td>
<td>Diagnose (DPV0) oder Modul – und</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>Diagnose in Modul 10</td>
<td>IOM Status (DPV1) sowie kanalbezogene Diagnose.</td>
</tr>
<tr>
<td>28</td>
<td>8</td>
<td></td>
<td>0</td>
<td>Diagnose in Modul 10</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>Diagnose in Modul 11</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Diagnose in Modul 12</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>Diagnose in Modul 13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Diagnose in Modul 14</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Diagnose in Modul 15</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>9</td>
<td></td>
<td>0</td>
<td>Diagnose in Modul 16</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-7</td>
<td>Reserviert</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td></td>
<td>Reserviert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-</td>
<td></td>
<td>Reserviert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6.3 Gerätebezogene Diagnose IS1+ Feldstation (DPV0)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Wert / Info</th>
<th>Meldung / Funktion</th>
<th>Maßnahmen / Behebung</th>
<th>CPU Status (NE107)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>-</td>
<td>0x14</td>
<td>Header Byte</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>-</td>
<td>CPU Diagnosedaten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0x0</td>
<td>Fehler in IS1+ Parameter von DP Master</td>
<td>Parametrierung in DP Master prüfen</td>
<td>Ausfall</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0x1</td>
<td>Fehler in IS1+ Konfigurationsdaten von DP Master</td>
<td>Konfigurationsdaten in DP Master prüfen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0x2</td>
<td>Versionskonflikt GSD / CPU</td>
<td>GSD Version und CPU Firmware sind nicht kompatibel. Zur CPU Firmware passende GSD verwenden.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0x3</td>
<td>Redundanz Parametrierung PM: OK / red. PM Überwachung deaktiviert</td>
<td>Parameter ´Red. PM´ muss auf ´Ja´ eingestellt werden wenn redundante PM gesteckt sind.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0x4</td>
<td>Steckplatzfehler CPU</td>
<td>Gerät tauschen</td>
<td>Wartungsbedarf</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0x5</td>
<td>9440: Red. CPU Beschr. benötigt 9442: Redundanz Parametr. PM: OK / red. PM Überwachung deaktiviert</td>
<td>9440: Konfiguration ändern 9442: Parameter ´Red. CPU´ muss auf ´Ja´ eingestellt werden wenn redundante CPU gesteckt sind.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>Ausfall CPU-L</td>
<td>Spannungsversorgung prüfen. Wenn OK, dann CPU tauschen.</td>
<td>Ausfall</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>Ausfall CPU-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>-</td>
<td>-</td>
<td>Leitungsredundanz</td>
<td>Prüfen: Busverbindungen, Busleitungen, Abschlusswiderstände, Feldbus Trennübertrager …</td>
<td>Wartungsbedarf</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0x0</td>
<td>X1: Empfang von AS gestört</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0x1</td>
<td>X2: Empfang von AS gestört</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0x2</td>
<td>X1: Senden zu AS gestört</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>0x3</td>
<td>X2: Senden zu AS gestört</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0x4</td>
<td>Nur 9442 CPU</td>
<td>Ausfall PM-L</td>
<td>Ausfall</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
<td>Ausfall PM-R</td>
<td>Versorgungsspannung prüfen. Wenn OK, dann Austausch Power Modul erforderlich.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td></td>
<td>Sockel Backupspeicher gestört</td>
<td>Backup Speicher im Sockel ist ausgefallen. System ist mit Daten in CPU eingeschränkt lauffähig bis nach 42 Power On/CPU Reset. Sockelausfallschein benötigt.</td>
<td>Wartungsbedarf</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
<td>Nur 9442 CPU</td>
<td>CPU Redundanz</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>0x0</td>
<td>Nur 9442 CPU</td>
<td>Backup CPU nicht verfügbar</td>
<td>Wartungsbedarf</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>*1)</td>
<td>(Meldung der CPU Redundanz ab 9440 Firmware V0x42 sowie ab GSD V1.25, V2.25 oder V3.03)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>0x0</td>
<td>Temperatur Alarm CPU / PM</td>
<td>Umgebungstemperatur von CPU oder PM außerhalb Spec. Bei Über- temperatur für bessere Belüftung, Kühlung, Beschattung … sorgen.</td>
<td>Außerhalb Spezifik.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x1</td>
<td>Überlast PM</td>
<td>Belastung der PM senken!</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x2</td>
<td>Wartungsbedarf CPU-L</td>
<td>Modultausch empfohlen aufgrund der Betriebsbedingungen.</td>
<td>Wartungsbedarf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x3</td>
<td>Wartungsbedarf CPU-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x4</td>
<td>Wartungsbedarf PM-L</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x5</td>
<td>Wartungsbedarf PM-R</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x6</td>
<td>Steckplatzfehler PM-L</td>
<td>Das PM hat eine unzulässige Änderung der Steckplatzadr. im Betrieb festgestellt. -> PM austauschen und fehlerhaftes PM an Stahl zurück senden.</td>
<td>Wartungsbedarf</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0x7</td>
<td>Steckplatzfehler PM-R</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*1) Nur 9442 CPU mit GSD Files ab V2.34
Kopplungsbeschreibung PROFIBUS DP

<table>
<thead>
<tr>
<th>0 – 2</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>IOM 1</td>
</tr>
<tr>
<td>Modul Diagnose Daten</td>
<td>siehe Tabelle unten</td>
</tr>
<tr>
<td>Ausfall</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4 – 6</th>
<th>IOM 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Diagnose Daten</td>
<td>siehe Tabelle unten</td>
</tr>
<tr>
<td>Hardwareabschaltung Signale</td>
<td>siehe oben</td>
</tr>
<tr>
<td>Ausfall</td>
<td></td>
</tr>
</tbody>
</table>

11-17 Aufbau der Byte 11 bis 17 für Module 3 bis 16 wie Byte 10!

18 0-3 IOM 1
4-7 IOM 2

<table>
<thead>
<tr>
<th>18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modul Wartungsdaten</td>
</tr>
</tbody>
</table>

19-25 Aufbau der Byte 19 bis 25 für Module 3 bis 16 wie Byte 18!

Modul Diagnose Daten (in Byte 10 – 17)

<table>
<thead>
<tr>
<th>Wert</th>
<th>Meldung</th>
<th>Kennungsbez. Diagnose *3</th>
<th>Maßnahmen / Behebung</th>
<th>IO-Modul Status (NE107)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (000)</td>
<td>Kommunikation zu IO-Modul xx OK</td>
<td>0</td>
<td>-</td>
<td>Kein Fehler</td>
</tr>
<tr>
<td>1 (001)</td>
<td>IO-Modul xx prim. Railverbindung gestört</td>
<td>0</td>
<td>IO-Modul, Railverbindung und CPU prüfen</td>
<td>Wartungsbedarf</td>
</tr>
<tr>
<td>2 (010)</td>
<td>IO-Modul xx red. Railverbindung gestört</td>
<td>0</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>3 (011)</td>
<td>IO-Modul xx meldet sich nicht</td>
<td>1</td>
<td>Korrekten Modul Typ stecken oder Modul tauschen</td>
<td>Ausfall</td>
</tr>
<tr>
<td>4 (100)</td>
<td>IO-Modul xx Konfiguration ungleich Baugruppe</td>
<td>1</td>
<td>Konfigurierten Modul Typ stecken oder Konfiguration des Masters korrigieren</td>
<td>Ausfall</td>
</tr>
<tr>
<td>5 (101)</td>
<td>IO-Modul xx Hardwarefehler</td>
<td>1</td>
<td>Modul tauschen</td>
<td>Ausfall</td>
</tr>
<tr>
<td>6 (110)</td>
<td>Reserviert</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7 (111)</td>
<td></td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

*3) Ab FW 0x-43: Verhalten der Kennungsbezogenen Diagnose Bits bei ungestörten Signalen sowie ohne sonstige Modul Diagnosen (z. B. "IOM xx Hardwareabschaltung Ausgänge" setzt das Kennungbezogene Diagnose Bit = 1).
Kopplungsbeschreibung PROFIBUS DP

<table>
<thead>
<tr>
<th>Modul Wartungsdaten</th>
<th>(in Byte 18 – 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit</td>
<td>Meldung</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>0, 4</td>
<td>Übertemperatur</td>
</tr>
<tr>
<td>1, 5</td>
<td>Fehler Steckplatz Adressierung</td>
</tr>
<tr>
<td>2, 6</td>
<td>Wartungsbedarf Modul</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.6.4 CPU Status (DPV1)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Wert / Info</th>
<th>Meldung / Funktion</th>
<th>Maßnahmen / Behebung</th>
<th>CPU Status (NE107)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>-</td>
<td>0x08</td>
<td>Header Byte</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>160 (0xA0)</td>
<td>Status_Type</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>0x00</td>
<td>Slot_Number</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>-</td>
<td>0x00</td>
<td>Specifier</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td>Fehler in IS1+ Parameter von DP Master</td>
<td>Parametrierung in DP Master prüfen</td>
<td>Ausfall</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>Fehler in IS1+ Konfigurationsdaten von DP Master</td>
<td>Konfigurationsdaten in DP Master prüfen</td>
<td>Ausfall</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>Redundanz Parametrierung PM: OK / red. PM Überwachung deaktiviert</td>
<td>Parameter ’Red. PM’ muss auf ’Ja’ eingestellt werden wenn redundante PM gesteckt sind.</td>
<td>Ausfall</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td>Steckplatzfehler CPU</td>
<td>Gerät tauschen</td>
<td>Ausfall</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Ausfall CPU-L</td>
<td>Spannungsversorgung prüfen. Wenn OK, dann CPU tauschen.</td>
<td>Ausfall</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td>Ausfall CPU-R</td>
<td></td>
<td>Ausfall</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td>Leitungs-redundanz (nur 9440)</td>
<td>X1: Empfang von AS gestört</td>
<td>Prüfen: Busverbindungen, Busleitungen, Abschlusswiderstände, Feldbus Trennübertrager …</td>
<td>Ausfall</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td>X2: Empfang von AS gestört</td>
<td></td>
<td>Ausfall</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>X1: Senden zu AS gestört</td>
<td></td>
<td>Ausfall</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td>X2: Senden zu AS gestört</td>
<td></td>
<td>Ausfall</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Nur 9442 CPU *1)</td>
<td>Ausfall PM-L</td>
<td>Versorgungsspannung prüfen. Wenn OK, dann Modultausch erforderlich.</td>
<td>Ausfall</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td>Ausfall PM-R</td>
<td></td>
<td>Ausfall</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td>Sockel Backupspeicher gestoert</td>
<td>Backup Speicher im Sockel ist ausgefallen. System ist mit Daten in CPU eingeschränkt lauffähig bis nächstem Power On/Reset. Sockeltausch bei nächstem Stillstand erforderlich.</td>
<td>Ausfall</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>CPU Redun-danz</td>
<td>Backup CPU nicht verfügbar (Meldung der CPM Redundanz ab 9440 Firmware V0x-42 sowie ab GSD V1.25, V2.25 oder V3.03)</td>
<td>Prüfen: - Busverbindung der red. CPU - Versorgungsspannung der red.CPU - Funktion der red. CPU - Rail Verbindung zwischen red.CPUs</td>
<td>Ausfall</td>
</tr>
</tbody>
</table>

*1) Nur 9442 CPU mit GSD Files ab V2.34, V3.12, V4.13 oder V5.13
Kopplungsbeschreibung PROFIBUS DP

<table>
<thead>
<tr>
<th>17</th>
<th>-</th>
<th>0x00</th>
<th>Reserviert</th>
<th>-</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>Ueberlast PM</td>
<td>Belastung der PM senken!</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td></td>
<td>Wartungsbedarf CPU-L</td>
<td>Belastung der PM senken!</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td></td>
<td>Wartungsbedarf CPU-R</td>
<td>Modultausch empfohlen Aufgrund der Betriebsbedingungen.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td>Wartungsbedarf PM-L</td>
<td>Modultausch empfohlen Aufgrund der Betriebsbedingungen.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td></td>
<td>Wartungsbedarf PM-R</td>
<td>Modultausch empfohlen Aufgrund der Betriebsbedingungen.</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td>Steckplatzfehler PM-L</td>
<td>Das PM hat eine unzulässige Änderung der Steckplatzadr. im Betrieb festgestellt. -> PM aus tauschen und fehlerhaftes PM an Stahl zurück senden.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
<td>Steckplatzfehler PM-R</td>
<td>Das PM hat eine unzulässige Änderung der Steckplatzadr. im Betrieb festgestellt. -> PM aus tauschen und fehlerhaftes PM an Stahl zurück senden.</td>
<td></td>
</tr>
</tbody>
</table>

*1) Byte 16 war bei 9440 verwendet als „Diag Update Counter“ (fest = 0 ab 9440 CPM Rev. 0x-49). Byte wurde bei der 9442 CPU mit neuen Funktionen belegt.
3.6.5 Modul Status (DPV1)

<table>
<thead>
<tr>
<th>Byte Nr.</th>
<th>MSB</th>
<th>LSB</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>0x08</td>
<td></td>
<td>Header Byte</td>
</tr>
<tr>
<td>19</td>
<td>130 (0x82)</td>
<td></td>
<td>Status_Type</td>
</tr>
<tr>
<td>20</td>
<td>0x00</td>
<td></td>
<td>Slot_Number</td>
</tr>
<tr>
<td>21</td>
<td>0x00</td>
<td></td>
<td>Specifier</td>
</tr>
<tr>
<td>22</td>
<td>Mod. 4</td>
<td>Mod. 3</td>
<td>Mod. 2 Mod. 1</td>
</tr>
<tr>
<td>23</td>
<td>Mod. 8</td>
<td>Mod. 7</td>
<td>Mod. 6 Mod. 5</td>
</tr>
<tr>
<td>24</td>
<td>Mod. 12</td>
<td>Mod. 11</td>
<td>Mod. 10 Mod. 9</td>
</tr>
<tr>
<td>25</td>
<td>Mod. 16</td>
<td>Mod. 15</td>
<td>Mod. 14 Mod. 13</td>
</tr>
</tbody>
</table>

Modul Status: 2 Bit je IO-Modul siehe unten

<table>
<thead>
<tr>
<th>Bit Werte</th>
<th>Modul Status</th>
<th>Kennungs- bezogene Diagnose</th>
<th>Maßnahmen / Behebung</th>
<th>Modul Status (NE107)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>Modul OK</td>
<td>0 = Alle Signale des IO-Moduls sind verfügbar</td>
<td>-</td>
<td>Kein Fehler</td>
</tr>
<tr>
<td>0 1</td>
<td>Modul- und Signal Sammelfehler (z.B. Leitungsunterbrechung, Kurzschluss, Rail Fehler, Übertemperatur ...)</td>
<td>1 = Einzelne oder alle Signale des IO-Moduls sind ausgefallen</td>
<td>Siehe Details in IO-Modul Status und Signal Diagnose</td>
<td>Wartungsbedarf Ausfall</td>
</tr>
<tr>
<td>1 0</td>
<td>Falscher Modul Typ gesteckt</td>
<td>1 = alle Signale des IO-Moduls sind ausgefallen</td>
<td>Konfigurierten Modul Typ stecken oder Konfiguration des Masters korrigieren</td>
<td>Ausfall</td>
</tr>
<tr>
<td>1 1</td>
<td>Kein Modul (antwortet nicht oder falsch)</td>
<td>1 = alle Signale des IO-Moduls sind ausgefallen</td>
<td>Korrekten Modul Typ stecken oder Modul tauschen</td>
<td>Ausfall</td>
</tr>
</tbody>
</table>

3.6.6 Redundanz Status (DPV1)

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Wert / Info</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>-</td>
<td>0x08</td>
<td>Header Byte</td>
</tr>
<tr>
<td>27</td>
<td>-</td>
<td>159 (0x9F)</td>
<td>Status_Type 158 (0x9E) in case of command confirmation</td>
</tr>
<tr>
<td>28</td>
<td>-</td>
<td>Slot</td>
<td>Slot_Number</td>
</tr>
<tr>
<td>29</td>
<td>-</td>
<td>0x00</td>
<td>Specifier</td>
</tr>
<tr>
<td>30</td>
<td>-</td>
<td>-</td>
<td>Function</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>Backup</td>
<td>Red_State_1 state from the initiator of the State_diagnosis</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>Primary</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>HW-Defect</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Data Exchange</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Master State Clear</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Baudrate found</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Toh started = 0 (Not supported)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Reserved</td>
<td>Red_State_3 state from the other Slave-Device</td>
</tr>
<tr>
<td>32</td>
<td>0 – 7</td>
<td>Belegung wie Byte 31</td>
<td>Red_State_2 state from the other Slave-Device</td>
</tr>
<tr>
<td>33</td>
<td>-</td>
<td>Reserved</td>
<td>Red_State_3</td>
</tr>
</tbody>
</table>

Achtung! Der Redundanz Status gemäß PNO Slave Redundanz Spezifikation wird nur mit aktiverer PNO Slave Redundanz übertragen. (unterstützt ab 9440 CPM Firmware V03-42)
3.6.7 IO-Modul Status (DPV1)

<table>
<thead>
<tr>
<th>Byte Nr.</th>
<th>Wert</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>0x06</td>
<td>Header Byte</td>
</tr>
<tr>
<td>n+1</td>
<td>129 (0x81)</td>
<td>Status_Type</td>
</tr>
<tr>
<td>n+2</td>
<td>Slot</td>
<td>Slot_Number</td>
</tr>
<tr>
<td>n+3</td>
<td>0x00</td>
<td>Specifier</td>
</tr>
<tr>
<td>n+4</td>
<td>siehe unten</td>
<td>IO-Modul globale Diagnosedaten</td>
</tr>
<tr>
<td>n+5</td>
<td></td>
<td>PROFISafe Status (Nur bei PROFISafe Modulen)</td>
</tr>
</tbody>
</table>

n = erstes Byte eines Status Blocks

IO-Module globale Diagnosedaten

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Meldung</th>
<th>Maßnahmen / Behebung</th>
<th>IO-Modul Status (NE107)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>prim. Railverbindung gestört</td>
<td>IO-Modul, Railverbindung und CPU prüfen</td>
<td>Wartungsbedarf</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>red. Railverbindung gestört</td>
<td>Modul tauschen</td>
<td>Ausfall</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Hardware Fehler</td>
<td>Modul ist OK.</td>
<td>Kein Fehler</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Hardwareabschaltung Signale</td>
<td>Alle Signale des Moduls wurden über die Hardware Sicherheitsabschaltung ´Anlagen Aus´ ausgeschaltet. Ausgabedaten vom AS werden verworfen. Ursache für externe Abschaltung prüfen und beseitigen.</td>
<td>Ausfall</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Übertemperatur</td>
<td>Die Temperatur um das IO-Modul ist zu hoch. Umgebungstemperatur senken oder für bessere Belüftung, Beschaltung …. sorgen.</td>
<td>Außerhalb Spezifik.</td>
</tr>
<tr>
<td>n+4</td>
<td></td>
<td>Fehler Steckplatz Adressierung</td>
<td>Das Modul hat eine unzulässige Änderung der Steckplatzadresse im Betrieb festgestellt. -> IO-Modul austauschen und fehlerhaftes IO-Modul an Stahl zurück senden.</td>
<td>Wartungsbedarf</td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>Wartungsbedarf Modul</td>
<td>Modultausch empfohlen Aufgrund der Betriebsbedingungen.</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IO-Modul Hinweis</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>Modul Hinweis beachten</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

9471/35-16-xx DIOM Z2 Ex n falsche externe Beschaltung Sensorbeschaltung oder Konfiguration Signaltyp prüfen. Ausfall
9469/35-08-xx AUM Z2 Ex n externe Spannungsversorgung (18 ..32V) gestört oder falsche externe Beschaltung Externe Spannungsversorgung (18..32V) oder Sensorbeschaltung oder Konfiguration Signaltyp prüfen. Ausfall
PROFISafe Status

<table>
<thead>
<tr>
<th>Byte</th>
<th>Wert</th>
<th>Diagnosis Text</th>
<th>Diagnosis Help Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>n+5</td>
<td>0x40</td>
<td>64 F_Dest_Add mismatch</td>
<td>Mismatch of safety destination address</td>
</tr>
<tr>
<td></td>
<td>0x41</td>
<td>65 F_Dest_Add not valid</td>
<td>Safety destination address not valid</td>
</tr>
<tr>
<td></td>
<td>0x42</td>
<td>66 F_Source_Add not valid</td>
<td>Safety source address not valid</td>
</tr>
<tr>
<td></td>
<td>0x43</td>
<td>67 F_WD_Time not defined</td>
<td>Safety watchdog time value is 0 ms</td>
</tr>
<tr>
<td></td>
<td>0x44</td>
<td>68 F_SIL parameter error</td>
<td>Parameter „F_SIL“ exceeds SIL from specific device application</td>
</tr>
<tr>
<td></td>
<td>0x45</td>
<td>69 F_CRC_Length error</td>
<td>Parameter „F_CRC_Length“ does not match the generated values</td>
</tr>
<tr>
<td></td>
<td>0x46</td>
<td>70 F-Param. version error</td>
<td>Version of F-Parameter set incorrect</td>
</tr>
<tr>
<td></td>
<td>0x47</td>
<td>71 CRC1-Fault</td>
<td>CRC1-check of received F-data failed</td>
</tr>
</tbody>
</table>
3.6.8 Kanalbezogene Diagnose

Optional kann im Diagnosetelegramm zusätzlich kanalbezogene Diagnoseinformation mit zum Master übertragen werden. Das Generieren der kanalbezogenen Diagnose kann im Bereich "USER_PRM_DATA" freigegeben werden. Für jede anstehende Diagnose der Eingabesignale werden 3 Byte übertragen:

<table>
<thead>
<tr>
<th>Byte</th>
<th>Bit</th>
<th>Wert / Info</th>
<th>Meldung / Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 - 5</td>
<td>1 – 16</td>
<td>Modul Steckplatz (Kennungsnummer)</td>
<td></td>
</tr>
<tr>
<td>6 - 7</td>
<td>0x02</td>
<td>Header</td>
<td></td>
</tr>
<tr>
<td>2 0 – 5</td>
<td>0 – 15</td>
<td>Kanal / Signalnummer</td>
<td></td>
</tr>
<tr>
<td>6 - 7</td>
<td>00 = reserviert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>01 = Eingabe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 = Ausgabe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 = Ein- / Ausgabe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 - 7</td>
<td>Signal Typ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0 – 4</td>
<td>0 - 31</td>
<td>Fehlertyp - siehe unten</td>
<td></td>
</tr>
<tr>
<td>5 – 7</td>
<td>000 = reserviert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>001 = Bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>010 = 2 Bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>011 = 4 Bit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 = Byte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101 = Wort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110 = 2 Worte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111 = reserviert</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Daten Typ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### Fehler-typ	Bedeutung	Status Code in zyklischen Daten [Hex]	Maßnahmen / Behebung	Signal Status (NE107)
0 | Reserved | - | - | -
1 | Kurzschluss | 7FFF / 8001 | Verbindung zwischen IO-Modul und Sensor/Aktor prüfen und Kurzschluss beseitigen | Ausfall
2 – 5 | Reserved | - | - | -
6 | Leitungsbruch | 7FFA / 8006 | Verbindung zwischen IO-Modul und Sensor/Aktor prüfen und korrekte Verbindung herstellen. | Ausfall
7 | Oberer Grenzwert überschritten | 7FF9 | Messbereichsgrenze des IO-Moduls (TIM) ist über- bzw. unterschritten. Eingangssignal innerhalb des zulässigen Messbereiches verwenden oder anderen Messbereich wählen falls möglich. | Ausfall
8 | Unterer Grenzwert unterschritten | 8008 | - | -
9 – 15 | Reserved | - | - | -
16 | Fehler Vergleichsstelle | 8010 | Der Messbereich der Vergleichsstelle (= Cold Junction Compensation) ist unter/ überschritten. Umgebungstemperatur des IO-Moduls prüfen. | Ausfall
17 | Hardware Fehler | 8011 | IO-Modul tauschen | -
18 | Übertemperatur | 8012 | Die Temperatur um das IO-Modul ist zu hoch. Umgebungstemperatur senken oder für bessere Belüftung, Beschattung … sorgen. | Ausfall
19 | Fehler 2 Leiter Abgleich | 8013 | 2 Leiter Abgleich neu durchführen. Während Kalibrierung auf guten Kurzschluss am Leitungsende achten. | -
20 | Parametrierfehler | 8014 | Unzulässige Parameter Kombination beseitigen | -
21 | Anlagen Aus | 8015 | Ursache für externe Signal Abschaltung prüfen und beseitigen. | -
22 – 31 | Reserved | - | - | -
Achtung!

Die maximale Telegrammlänge des IS1+ Diagnosetelegramms ist begrenzt:
max. 122 Byte mit GSD V2.xx oder V3.xx bei CPM 9440 und CPU 9442
max. 244 Byte mit GSD V4.xx oder V5.xx und CPU 9442

Bei vielen gleichzeitig anstehenden IO-Modul Stati und/oder Signaldiagnosen kann die maximal übertragbare Datenmenge der Diagnosedaten überschritten werden, wodurch IO-Modul Stati oder kanalbezogene Diagnosedaten am Telegrammende abgeschnitten werden und damit verloren gehen.

Können wegen Pufferüberlauf nicht alle IO-Modul Stati und kanalbezogenen Diagnosedaten übertragen werden, so wird dies im normspezifischen Diagnosebereich mit der Meldung "Diagnoseüberlauf" angezeigt.

Unabhängig davon ist die Übertragung der Standard-, der kennungsbezogenen Diagnose sowie CPM-, Modul- und Redundanz Status sowie der Alarme immer sichergestellt.
3.7 Sammellarm / Status Feldstation

Für die CPU werden 1 Byte Inputdaten (Statusregister) und 1 Byte Outputdaten (Steuerregister) im zyklischen Bereich von PROFIBUS DP übertragen. Der Inhalt des Statusregisters kann im AS zur Erzeugung eines feldstationsglobalen Sammellarmarmes verwendet werden. Bei Anwendungen ohne Stahl CPM Redundanz wird die Funktion des Steuerregisters über den Parameter ´CPU Redundanz = Nein´ (Default Einstellung) deaktiviert.

Tipp: Wird das Status-/Steuerregister als letztes Modul nach den real gesteckten IO-Modul projektiert, bleiben die Steckplatzadressen der IO-Module unverändert.

3.7.1 Steuerregister CPU

Bei Verwendung der STAHL Redundanz dient das Steuerregister zur Steuerung der Betriebszustände der beiden redundanten CPU. Derselbe Wert ist zu beiden CPUs zu übertragen. Es wird empfohlen nur die Werte 1 und 2 für die Steuerung der Redundanzumschaltung zu verwenden. Bei Anwendungen mit CPU Redundanz gemäß PNO Spec. ist das Steuerregister ohne Funktion.

<table>
<thead>
<tr>
<th>Bit Nr.</th>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>0000</td>
<td>0 = Zustand beibehalten, Outputs = Sicherheitsstellung</td>
</tr>
<tr>
<td></td>
<td>x0</td>
<td>1 = linke CPU aktivieren</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2 = rechte CPU aktivieren</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>3 = Zustand beibehalten, Outputs aktiv</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reserviert</td>
</tr>
</tbody>
</table>

3.7.2 Statusregister CPU

Das Statusregister enthält Informationen über beide möglichen CPUs. Bei Betrieb ohne CPU Redundanz ist nur der Zustand der linken CPU auszuwerten. Durch das Statusregister kann der aktuelle Zustand der beiden CPUs zur Überprüfung vom AS rückgelesen werden:

<table>
<thead>
<tr>
<th>Bit Nr.</th>
<th>Wert</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-6</td>
<td>0110</td>
<td>0 = keine CPU ist aktiv</td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>1 = linke CPU ist primary (aktiv)</td>
</tr>
<tr>
<td></td>
<td>1100</td>
<td>2 = rechte CPU ist primary (aktiv)</td>
</tr>
<tr>
<td></td>
<td>1111</td>
<td>Zustand linke CPU</td>
</tr>
<tr>
<td></td>
<td>1110</td>
<td>Zustand rechte CPU</td>
</tr>
</tbody>
</table>
Zustand CPU:

<table>
<thead>
<tr>
<th>Wert</th>
<th>Meldung / Funktion</th>
<th>Maßnahmen / Behebung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wert 1 (001)</td>
<td>*1) Hardwarefehler CPU</td>
<td>CPU austauschen</td>
</tr>
<tr>
<td>Wert 2 (010)</td>
<td>Data Exchange mit AS mit Diag Daten ! -- Sammelalarm FS generieren</td>
<td>Diagnose Tool des AS oder IS1+ DTM verwenden um Details zu ermitteln</td>
</tr>
<tr>
<td>Wert 3 (011)</td>
<td>*1) kein Data Exchange (nach Power On)</td>
<td>Data Exchange durch AS in Betrieb setzen</td>
</tr>
<tr>
<td>Wert 4 (100)</td>
<td>*1) Konfigurations- oder Parameter Fehler</td>
<td>Konfigurations- und Parameterdaten in DP Master prüfen</td>
</tr>
<tr>
<td>Wert 5 (101)</td>
<td>*1) Data Exchange mit AS verlassen</td>
<td>Busverbindung zu AS prüfen. Data Exchange durch AS in Betrieb setzen</td>
</tr>
<tr>
<td>Wert 6 (110)</td>
<td>Data Exchange mit AS ohne Diag. Daten -- alle IO-Module und CPUs sind ohne Fehler</td>
<td>Keine Fehler</td>
</tr>
<tr>
<td>Wert 7 (111)</td>
<td>*1) Inaktive (backup) CPU ist nicht erreichbar</td>
<td>Prüfen:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Busverbindung der red. CPU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Versorgungsspann. der red. CPU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Funktion der red. CPU</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Rail Verbindung zwischen red. CPUs</td>
</tr>
</tbody>
</table>

*1) **Achtung:**
Wert nur bei CPU Redundanz sinnvoll auswertbar.
Bei Betrieb ohne CPU Redundanz kann das Statusregister bei Bus- oder Slaveausfall im AS nicht mehr aktualisiert werden. Der Sammelalarm ´Diagnose Daten sind vorhanden´ kann somit nur bei zyklischem Busbetrieb sinnvoll ausgewertet werden. Der Zustand ´Slaveausfall´ ist im AS separat abzufragen und kann nicht durch Auswertung des Statusregisters erkannt werden.

Das Statusregister enthält Informationen über beide CPUs. Bei regulärem Betrieb wird diese Statusinformation zwischen beiden CPUs quer gekoppelt und kann somit von beiden CPUs gelesen werden. Im Störfall kann die Statusinformation jedoch in der backup CPU verloren gehen. Deshalb ist vom AS immer nur das Statusregister der primary (aktiven) CPU auszuwerten.

3.8 LED- und LCD-Anzeige CPM 9440

Am CPM 9440 einer IS1+ Feldstation kann vor Ort der Betriebszustand sowie die Kommunikation auf dem PROFIBUS DP anhand der LED’s sowie der LCD-Anzeige angezeigt werden.
Die LCD-Anzeige ermöglicht zusätzlich die Anzeige der Signalwerte sowie Signal- und Moduldiagnosen.

-> Details siehe Betriebsanleitung IS1+ CPM 9440 sowie Betriebsanleitung IS1+ CPM Display

3.9 LED-Anzeige CPU 9442

An der CPU 9442 kann vor Ort der Betriebszustand sowie die Kommunikation auf dem PROFIBUS DP anhand der LED’s angezeigt werden.

Details siehe Betriebsanleitung IS1+ CPM 9442
3.10 DPV1 Datensätze

Folgende DPV1 Datensätze werden unterstützt:

<table>
<thead>
<tr>
<th>Slot</th>
<th>Write_ind [DS Index]</th>
<th>Read_ind [DS Index]</th>
<th>Telegramm Abwicklung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (CPU)</td>
<td>255 -> 65000</td>
<td>255</td>
<td>write_ind -> read_ind</td>
<td>I&M0 Funktion</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>I&M1 ... I&M3</td>
</tr>
<tr>
<td></td>
<td>255 -> 65004</td>
<td>255</td>
<td>write_ind -> read_ind</td>
<td>I&M4 Funktion</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>7</td>
<td>read_ind</td>
<td>HART Livelist</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>write_ind -> read_ind</td>
<td>Servicebus Protokoll-Kapselung über DPV1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>9</td>
<td>read_ind</td>
<td>Rücklesen der eingestellten Profisafe-Dest-Adressen aller PROFIsafe Module</td>
</tr>
<tr>
<td>1-16 (IOM)</td>
<td>255 -> 65000</td>
<td>255</td>
<td>write_ind -> read_ind</td>
<td>I&M0 Funktion</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>I&M1 ... I&M3</td>
</tr>
<tr>
<td></td>
<td>255 -> 65004</td>
<td>255</td>
<td>write_ind -> read_ind</td>
<td>I&M4 Funktion</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>129</td>
<td>read_ind</td>
<td>HART Parameter</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>148</td>
<td>read_ind</td>
<td>HART DS Auskunft</td>
</tr>
<tr>
<td></td>
<td>-</td>
<td>149</td>
<td>read_ind</td>
<td>HART Feature Flags</td>
</tr>
<tr>
<td>80</td>
<td>81</td>
<td>read_ind</td>
<td>HART Abwicklung Kanal 0</td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>83</td>
<td></td>
<td>HART Abwicklung Kanal 1</td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>85</td>
<td></td>
<td>HART Abwicklung Kanal 2</td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>87</td>
<td></td>
<td>HART Abwicklung Kanal 3</td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>89</td>
<td></td>
<td>HART Abwicklung Kanal 4</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>91</td>
<td></td>
<td>HART Abwicklung Kanal 5</td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>93</td>
<td></td>
<td>HART Abwicklung Kanal 6</td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>95</td>
<td></td>
<td>HART Abwicklung Kanal 7</td>
<td></td>
</tr>
</tbody>
</table>

Aufbau der HART Datensätze gemäß PNO Spez. 2.312
Aufbau der I&M Datensätze gemäß PNO Spez. 3.502
Aufbau HART Livelist und Servicebus Protokoll gemäß Stahl Spezifikation. -> Abwicklung über IS1+ DTM

Auch bei Verwendung mehrerer paralleler C2 Kanäle wird nur eine HART Telegramm Abwicklung zu einer Zeit unterstützt.
3.11 I&M Funktion (DPV1)

IS1+ unterstützt die I&M (Identification and maintenance) Funktion gemäß PNO Spezifikation und liefert für jedes Modul folgenden Datensatz I&M auf Index 255:

I&M0 auf Index 255 / 65000, Read/Write:

<table>
<thead>
<tr>
<th>Name</th>
<th>Größe</th>
<th>Daten Typ</th>
<th>Dateninhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacturer specific</td>
<td>10 Octets</td>
<td></td>
<td>Leer = 0 (nicht verwendet)</td>
</tr>
<tr>
<td>I&M Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DEVICE_MAN_ID</td>
<td>2 Octets</td>
<td>Uint16</td>
<td>158 (0x9e)</td>
</tr>
<tr>
<td>ORDER_ID</td>
<td>20 Octets</td>
<td>Visible String</td>
<td>z.B. '9440/15-01-11' (STAHL Typ Nr.)</td>
</tr>
<tr>
<td>SERIAL_NUMBER</td>
<td>16 Octets</td>
<td>Visible String</td>
<td>z.B. '115337-0004'</td>
</tr>
<tr>
<td>HARDWARE_REVISION</td>
<td>2 Octets</td>
<td>Uint16</td>
<td>z.B. 'F' = 0x0046 *1)</td>
</tr>
<tr>
<td>ORDER_ID</td>
<td>20 Octets</td>
<td>Visible String</td>
<td>z.B. '02-31' *2)</td>
</tr>
<tr>
<td>SERIAL_NUMBER</td>
<td>16 Octets</td>
<td>Visible String</td>
<td>1.0</td>
</tr>
<tr>
<td>HARDWARE_REVISION</td>
<td>2 Octets</td>
<td>Uint16</td>
<td>0x0000</td>
</tr>
<tr>
<td>SOFTWARE_REVISION</td>
<td>4 Octets</td>
<td>Uint16</td>
<td>0x0000</td>
</tr>
<tr>
<td>IM_VERSION</td>
<td>2 Octets</td>
<td>2 Uint8</td>
<td>1.0</td>
</tr>
<tr>
<td>IM_SUPPORTED</td>
<td>2 Octets</td>
<td>Bit Array</td>
<td>0 (0x1E mit 9442 CPU und GSD V4.xx oder V5.xx)</td>
</tr>
</tbody>
</table>

*1) HARDWARE_REVISION:
STAHL verwendet bei IS1+ die Buchstaben ´A´ bis ´X´ welche als ´Character´ übertragen werden (Beispiel: ´A´ = 0x0041).

*2) SOFTWARE_REVISION:
Beispiel für Zuordnung:

<table>
<thead>
<tr>
<th>Stahl Software Version</th>
<th>V 02-31</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daten Typ</td>
<td>Char</td>
</tr>
<tr>
<td>Daten</td>
<td>'V' = 0x56</td>
</tr>
<tr>
<td>angezeigt</td>
<td>'V'</td>
</tr>
</tbody>
</table>

I&M1 auf Index 255 / 65001, Read/Write:

<table>
<thead>
<tr>
<th>Name</th>
<th>Größe</th>
<th>Daten Typ</th>
<th>Dateninhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacturer specific</td>
<td>10 Octets</td>
<td></td>
<td>Leer = 0 (nicht verwendet)</td>
</tr>
<tr>
<td>I&M Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TAG_FUNCTION</td>
<td>32 Octets</td>
<td>Visible String</td>
<td>Anwenderspezifische Daten welche im Gerät gespeichert werden</td>
</tr>
<tr>
<td>TAG_LOCATION</td>
<td>22 Octets</td>
<td>Visible String</td>
<td>Default: gefüllt mit ´0x20´ (blank)</td>
</tr>
</tbody>
</table>

I&M1 bis I&M4 nur von 9442 CPU unterstützt!
Kopplungsbeschreibung PROFIBUS DP

I&M2 auf Index 255/ 65002, Read/Write:

<table>
<thead>
<tr>
<th>Name</th>
<th>Größe</th>
<th>Daten Typ</th>
<th>Dateninhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacturer specific</td>
<td>10 Octets</td>
<td>Leer = 0 (nicht verwendet)</td>
<td></td>
</tr>
<tr>
<td>I&M Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSTALLATION_DATE</td>
<td>16 Octets</td>
<td>Visible String</td>
<td>YYYY-MM-DD hh:mm z. B. 1995-02-04 16:23</td>
</tr>
<tr>
<td>RESERVED</td>
<td>38 Octets</td>
<td></td>
<td>Default: gefüllt mit ´0x20´ (blank)</td>
</tr>
</tbody>
</table>

I&M3 auf Index 255/ 65003, Read/Write:

<table>
<thead>
<tr>
<th>Name</th>
<th>Größe</th>
<th>Daten Typ</th>
<th>Dateninhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacturer specific</td>
<td>10 Octets</td>
<td>Leer = 0 (nicht verwendet)</td>
<td></td>
</tr>
<tr>
<td>I&M Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DESCRIPTOR</td>
<td>54 Octets</td>
<td>Visible String</td>
<td>Anwenderspezifische Daten welche im Gerät gespeichert werden. Default: gefüllt mit ´0x20´ (blank)</td>
</tr>
</tbody>
</table>

I&M4 auf Index 255/ 65004, Read/Write:

<table>
<thead>
<tr>
<th>Name</th>
<th>Größe</th>
<th>Daten Typ</th>
<th>Dateninhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Header</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manufacturer specific</td>
<td>10 Octets</td>
<td>Leer = 0 (nicht verwendet)</td>
<td></td>
</tr>
<tr>
<td>I&M Block</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIGNATURE</td>
<td>54 Octets</td>
<td>OctetString</td>
<td>Projekt spezifische Daten aus Parametrier Tools, welche im Gerät gespeichert werden. Default: gefüllt mit ´0x00´</td>
</tr>
</tbody>
</table>
3.12 Online Verhalten der IS1+ Feldstation.

Die IS1+ Feldstation unterstützt zusätzlich zu dem bei PROFIBUS DP üblichen Hochlaufverhalten mit einem DP Master (siehe 2.11.3 Typischer Anlaufvorgang) auch folgende Funktionen:

3.12.1 Parameteränderungen.

Befindet sich eine IS1+ Feldstation im Data Exchange mit einem DP Master, so kann das Telegramm ´Set_Prm´ (Parameter senden) zwischen den zyklischen Daten vom Master zur Feldstation übertragen werden. Die Feldstation prüft die Länge des Parametertelegrammes und übernimmt bei korrekter Telegrammlänge die neuen Parameterdaten ohne den Zustand Data Exchange zu verlassen. Damit sind Online Veränderungen der Parameter der IS1+ Feldstation durch einen PROFIBUS DP Master (V0) möglich. Wird ein ´Set_Prm´ Telegramm mit falscher Telegrammlänge empfangen, so werden diese Daten nicht übernommen. Die Feldstation wechselt in den Zustand ´Wait Parameter´ wodurch ein Neuanlauf mit dem Master erzwungen wird.

3.12.2 Konfigurationsänderungen.

Befindet sich eine IS1+ Feldstation im Data Exchange mit einem DP Master, so wird das Telegramm ´Chk _Cfg´ nur von der Feldstation angenommen, wenn sich die Konfiguration der Feldstation nicht verändert hat. Wird ein Telegramm mit veränderten Konfigurationsdaten während des Data Exchange empfangen, so verlässt die Feldstation den Zustand Data Exchange und geht in den Zustand ´Wait Parameter´ wodurch ein Neuanlauf mit dem Master erzwungen wird.

Beabsichtigt ein Master die Konfigurationsdaten der Feldstation zu ändern, oder den Data Exchange für eine definierte, kurze Zeit zu unterbrechen, so sollte der Data Exchange vom Master gezielt beendet werden durch senden des Telegrammes ´Set_Prm´ mit ´Unlock_Req = TRUE´, wodurch die Feldstation in den Zustand ´Wait Parameter´ gebracht wird. Danach kann vom Master ein regulärer Slaveanlauf mit neuen Konfigurations- und Parameterdaten durchgeführt werden.

Über den Parameter ´Haltezeit Ausgabemodule´ sowie über die Ansprechüberwachungszeit (siehe 3.4.2) können die Ausgabesignale der Feldstation bei Unterbrechung des Data Exchange für eine parametrierbare Zeit eingefroren werden. Kehrt der Master mit der Feldstation vor Ablauf dieser Zeiten wieder in den Zustand Data Exchange zurück, so gehen die Ausgabesignale nicht in die gewählte Sicherheitsstellung sondern werden vom Master nun wieder zyklisch aktualisiert.

4 Ethernet Interface 9442 CPU

4.1 Ethernet Netzwerk Topologie
Die IS1+ 9442 CPU verfügt über zwei Ethernet Ports (Anschlüsse X2, P1 sowie X2, P2). Bei Verwendung des PROFIBUS Protokolls kann nur der Port X2, P1 verwendet werden. Der Port X2, P2 wird in diesem Fall nicht unterstützt.

4.2 IP Adresseinstellung
Die 9442 IS1+ CPU verwendet für die Ethernet Kommunikation zwei separate IP Adressen:
- IP-AS: Bei PROFIBUS nicht verwendet
- IP-SB: Service Bus Funktionen: Web-Server, SW-Update

Eine Veränderung der IP-Adressen ist während aktivem Data Exchange zum Automatisierungsgerät gesperrt.

Achtung! IP-AS und IP-SB Adressen einer CPU müssen wie alle IP Adressen eines Ethernet Netzwerkes einmalig und eindeutig sein!
Es ist zu beachten, dass auch die IP-Adressinformationen im Sockelspeicher der IS1+ CPU gespeichert werden. Bei Austausch von CPUs bleiben Konfigurations- und Adressinformationen einer IS1+ Feldstation daher erhalten.

4.3 IS1+ Detect
Mittels des Tools 'IS1+ Detect' kann eine Liste der physikalisch über Ethernet erreichbaren IS1+ Feldstationen mit 9442 CPU erstellt werden und die bisher eingestellten IP Adressen der gefundenen Stationen angezeigt werden. Dies gilt auch für IS1+ Stationen welche außerhalb des über IP adressierbaren Netzwerk Adressbereiches liegen.

Bei Bedarf können die IP-SB Adressen über das Tool verändert werden, so dass diese nachfolgend im adressierbaren IP Adressraum des Netzwerkes liegen. Damit sind die IS1+ Stationen über die integrierten Web Server erreichbar.
4.4 Webserver

Passwort und Zugangs-Konzept:
Die verschiedenen Menüpunkte des IS1+ Web Servers sind unterteilt in drei Gruppen:

<table>
<thead>
<tr>
<th>Gruppe</th>
<th>Seite</th>
<th>Funktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>IS1+ Web Diagnostic</td>
<td>Diagnostic Overview</td>
<td>Standard Diagnose Informationen – Nur Read Rechte</td>
</tr>
<tr>
<td></td>
<td>Plugged Modules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Configured Modules</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Backplanes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HART Live List</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Module Diagnostic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System Diagnostic</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AS- Protocol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPU Parameter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>License</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Event History</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Company</td>
<td></td>
</tr>
<tr>
<td>User Access</td>
<td>User LogIn/Out</td>
<td>Netzwerk Einstellungen und Software Update der CPU</td>
</tr>
<tr>
<td></td>
<td>Fieldstation</td>
<td>- Ohne User Password: Nur Read Rechte</td>
</tr>
<tr>
<td></td>
<td>Network</td>
<td>- Mit User Password: Read- und Write Rechte wahiger User Daten wie</td>
</tr>
<tr>
<td></td>
<td>CPU Software Update</td>
<td>IP-Adresse, Device Name</td>
</tr>
<tr>
<td>Service Access</td>
<td>Service LogIn/Out</td>
<td>Service Informationen</td>
</tr>
</tbody>
</table>

User LogIn/Out
Das User Passwort ist per Default eingestellt auf: **R.STAHL**
Nach erfolgreichem User-Login ist es vom Anwender zu verändern.
Wurde das Passwort vergessen, so kann mittels der Funktion `Store encrypted Passwords` eine Datei erzeugt werden, aus welcher der R.STAHL Service das eingestellte Passwort rücklesen kann. Damit ist ein Login möglich und das verwendete Passwort ist nachfolgend vom Anwender erneut zu ändern.
Kopplungsbeschreibung PROFIBUS DP

IP-SB Adresse

Bei redundanten IS1 CPUs werden die Adressen IP-AS, IP-SB sowie die Device Namen beider CPUs (linke- und rechte CPU) im IS1+ Webserver angezeigt wobei der Web Server mit einer der beiden CPUs verbunden ist (connected).

![Webserver Bildschirm](IS1+ Web Diag - CPU 9442 - Right)

Service Bus / RS485 Addr.

- **AS Protocol**: PROFIBUS PNO Red.
- **SB-DHCP**: Disable

IP-AS
- **IP-Adresse**: 192.168.0.52
- **Subnet**: 255.255.255.0
- **Default GW**: 0.0.0.0
- **MAC Address**: 00:1f:72:00:49

IP-SB
- **IP-Adresse**: 172.24.47.81
- **Subnet**: 255.255.255.0
- **Default GW**: 0.0.0.0
- **MAC Address**: 00:1f:72:00:49

IP-Address change is disabled during AS Data Exchange.
5 APL Feldgerätebibliothek zur Anbindung an Leitsystem PCS7

Bei der Implementierung moderner, auf PCS 7 basierender Automatisierungsprojekte werden Sie häufig mit speziellen Herausforderungen konfrontiert, für die eine Standard PCS 7 Umgebung keine Lösung bietet. Die R. STAHL IS1+ PCS7 APL Feldgerätebibliothek ermöglicht eine einfache Anbindung von R. STAHL IS1+ Modulen an das Siemens Leitsystem PCS7 über PROFIBUS. Inhalt der Bibliothek sind PCS7 konform erstellte CFC Bausteine, sowie eine Dokumentation in Englisch. Hierbei werden Standardfunktionen wie die automatische Verschaltung durch den Treibergenerator oder Assetmanagement unterstützt. Die PCS 7 Bausteine ermöglichen Ihnen, zusätzliche Fehlerquellen zu vermeiden, eigene Ressourcen zu schonen und sich voll und ganz auf Ihr Automatisierungsprojekt zu konzentrieren. Die APL Feldgerätebibliothek ist kompatibel bis PCS7 V8.0 SP2 und direkt bei Siemens in Karlsruhe zu beziehen. Kontakt und Support: function.blocks.industry@siemens.com.

Unterstützte Funktionen
- Einsatz von R. STAHL IS1+ in einem nicht redundanten S7-400 CPU System
- Einsatz von R. STAHL IS1+ in einem redundanten S7-400-H CPU System
- Einsatz von R. STAHL IS1+ hinter einem Y-Link Modul
- Modul und Kanalgranulare Diagnose
- Assetmanagement
- Treibergenerator
- HART Variablen

Kundennutzen
- Umfangreiche Bibliothek mit getesteten und bewährten Treiberbausteinen
- Einfache Kalkulation auf Basis von Fixpreisen
- Hotline & Support durch unser Spezialisten- team
- Dokumentation der Bausteine

Treiber für PCS7 V8.0 SP2 auf Basis IS1 GSD V3.05 unterstützt CPM 9440 Redundanz. Support für 9442 mit CPU Redundanz in Vorbereitung.
6 Liste der Abkürzungen:

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
<th>Englischer Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS</td>
<td>Automatisierungssystem</td>
<td>Automation System</td>
</tr>
<tr>
<td>AIM</td>
<td>Analog Eingabemodul</td>
<td>Analog Input Module</td>
</tr>
<tr>
<td>AIMH</td>
<td>Analog Eingabemodul + HART</td>
<td>(Analog Input Module)</td>
</tr>
<tr>
<td>AUMH</td>
<td>Analog Universal Modul AI/AO mit HART</td>
<td></td>
</tr>
<tr>
<td>SAIMH</td>
<td>Safety Analog Eingabemodul + HART (PROFIsafe)</td>
<td></td>
</tr>
<tr>
<td>AOM</td>
<td>Analog Ausgabemodul</td>
<td>Analog Output Module</td>
</tr>
<tr>
<td>AOMH</td>
<td>Analog Ausgabemodul + HART</td>
<td></td>
</tr>
<tr>
<td>CPM</td>
<td>CPU + PM = CPM Zentraleinheit 9440 best. aus Kommunikationsprozessor mit Netzteil</td>
<td></td>
</tr>
<tr>
<td>DIM</td>
<td>Digital Eingabemodul</td>
<td>Digital Input Module</td>
</tr>
<tr>
<td>DIOM</td>
<td>Digitales Ein-Ausgabe Modul</td>
<td>Digital Input Output Module</td>
</tr>
<tr>
<td>DOM</td>
<td>Digital Ausgabemodul</td>
<td>Digital Output Module</td>
</tr>
<tr>
<td>DOMR</td>
<td>Digital Ausgabemodul Relais</td>
<td>Digital Output Module Relays</td>
</tr>
<tr>
<td>DOMV</td>
<td>Digital Ausgabemodul Ventile</td>
<td>Digital Output Module Valves</td>
</tr>
<tr>
<td>HW</td>
<td>Hardware</td>
<td></td>
</tr>
<tr>
<td>IOP</td>
<td>I/O - Prozessor der Zentraleinheit</td>
<td></td>
</tr>
<tr>
<td>IOM</td>
<td>Allgemeine Bezeichnung für I/O - Modul</td>
<td></td>
</tr>
<tr>
<td>PM</td>
<td>Power Module (Netzgerät)</td>
<td></td>
</tr>
<tr>
<td>SW</td>
<td>Software</td>
<td></td>
</tr>
<tr>
<td>SIL</td>
<td>Safety Integrity Level</td>
<td></td>
</tr>
<tr>
<td>TIM</td>
<td>Temperatur Eingabemodul</td>
<td>Temperature Input Module</td>
</tr>
</tbody>
</table>
Kopplungsbeschreibung PROFIBUS DP

7 Versionsveränderungen:

<table>
<thead>
<tr>
<th>Version dieses Dokument</th>
<th>Version GSD file</th>
<th>Erweiterungen / Änderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>3.00</td>
<td></td>
</tr>
</tbody>
</table>
| | | • PROFIBUS gemäß DPV1
| | | - Diagnose Statusmeldungen
| | | - I&M Funktion
| | | - Unterstützung von PROFI-safe I/O Modulen
| | | - Unterstützung der IS1+ DTM (FDT) mit Kommunikation über DPV1
| 1.01 | 3.01 |
| | | • MaxTsdr Angaben für Betrieb mit Leitungsredundanz ergänzt.
| | | • Signaldiagnosemeldung „Übertemperatur“ für 9462 Module ergänzt
| 1.02 | 3.02 |
| | | • Feld IM_SUPPORTED in I&M0 geändert.
| 1.03 | 3.03 |
| | | • Beschreibung PNO Slave Redundanz zugefügt
| | | - CPM Parameter zugefügt: ´Adress Offset backup CPM PNO Red´
| | | - CPM Diagnose zugefügt: ´Backup CPM nicht verfügbar´
| | | - Max 15 IOM ab GSD V3.03
| | | • Modul zugefügt: DOMV 9478/22-08-51
| | | • 9480 TIMR Parameter zugefügt für CU53 GOST, Pt46 GOST, Pt50 GOST
| 1.04 | 3.03 |
| | | • Beschreibung PNO Slave Redundanz erweitert
| 2.00 | 2.26 (DPV0)
| | 3.04 (DPV1) |
| | | • DPV0 und DPV1 sind gemeinsam in diesem Dokument beschrieben.
| | | • IS1+ Erweiterungen mit neuen IOM 9468, 9470/3 und 9475/3
| | | • Beschreibung der STAHL Redundanz ergänzt.
| 2.01 | 3.05 (DPV1) |
| | | • Neuer Parameter: Steckplatz Offset DPV1 Diagnose = 0/1
| 2.02 | 2.28 (DPV0)
| | 3.06 (DPV1) |
| | | • Diagnosemeldung ´Modul Hinweis beachten´ ergänzt für 9475 DOM4
| 2.03 | 2.29 (DPV0)
| | 3.07 (DPV1) |
| | | • Neues IS1+ IOM 9482 TIM ergänzt
| 2.04 | 2.30 (DPV0)
| | 3.08 (DPV1) |
| | | • IS1+ Modulbeschreiber mit IS1+ kompatiblen zyklischen Datenformaten ohne separaten Signal Status zugefügt. (No Stat)
| 2.05 | 2.31 (DPV0)
| | 3.09 (DPV1) |
| | | • IS1+ Modulbeschreiber mit IS1+ kompatiblen zyklischen Datenformaten zugefügt: 9470/3x-16-xx DIM 16 9470/2
| 2.07 | 2.33 (DPV0)
| | 3.11 (DPV1) |
| | | • Neue IS1+ Module ergänzt.
| | | - 9469/35 UMH Z2 Ex n
| | | - 9471/35 DIOM Z2 Ex n
| | | - 9472/35 DIOM-24V Z2 Ex n
| 3.00_b7 | 2.34 (DPV0)
| | 3.12 (DPV1) |
| | | • Neue 9442 Zone2 CPU ergänzt.
| | 4.13 (DPV0) |
| | | • 9469: DI Pulsverlängerung 1,2 s zugefügt.
| | 5.13 (DPV1) |

Betriebsanleitung

Kopplungsbeschreibung PROFIBUS DP
8 Support Adresse

R. STAHL Schaltgeräte GmbH
Business Unit Automation Interface and Solutions

eMail: support.automation@stahl.de
Supportinformationen: http://www.r-stahl.com
Service Hotline IS1: +49 (7942) 943-4123
Telefax: +49 (7942) 943-40 4123
9 Appendix A: GSD File Rev. vs. CPM 9440 Firmware Rev

The Table shows allowed GSD File revisions for different IS1 CPM 9440 firmware revisions. In general, it is allowed to use an old GSD revision with later firmware versions, but you cannot use a new GSD revision with an older firmware. This will cause a configuration error. Be carefully if you have different versions of GSD and firmware in your plant to avoid unexpected problems.

<table>
<thead>
<tr>
<th>Firmware 9440</th>
<th>GSD Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>DP:V0</td>
<td>DP:V1</td>
</tr>
<tr>
<td>1-33</td>
<td>2-33</td>
</tr>
<tr>
<td>1-34</td>
<td>2-34</td>
</tr>
<tr>
<td>1-35</td>
<td>2-35</td>
</tr>
<tr>
<td>1-41</td>
<td>2-41</td>
</tr>
<tr>
<td>1-42</td>
<td>2-42</td>
</tr>
<tr>
<td>1-43</td>
<td>2-43</td>
</tr>
<tr>
<td>1-44</td>
<td>2-44</td>
</tr>
<tr>
<td>1-45</td>
<td>2-45</td>
</tr>
<tr>
<td>1-46</td>
<td>2-46</td>
</tr>
<tr>
<td>1-47</td>
<td>2-47</td>
</tr>
<tr>
<td>1-48</td>
<td>2-48</td>
</tr>
<tr>
<td>1-49</td>
<td>2-49</td>
</tr>
</tbody>
</table>

For IS1+ I/O Modules CPM firmware and GSD revision, I/O module firmware is V3.xx

Firmware is1 I/O Modules: V2.xx and V3.xx V2.xx and V3.xx V1.xx, V2.xx and V3.xx (1*)

CPM Redundancy

<table>
<thead>
<tr>
<th>According STAHL</th>
<th>According STAHL</th>
<th>According STAHL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PNO</td>
<td>PNO</td>
<td>PNO</td>
</tr>
</tbody>
</table>

Usable amount of I/O Data: 238 Byte Input and 127 Byte output 238 Byte Input and 127 Byte output 112 Byte Input and 80 Byte output

1*) Firmware V3.xx (IS1+ I/O modules) is only in compatibility mode (as 1 to 1 replacement of old I/O modules) usable.

The CPM firmware mentioned here will run on 9440/15, 9440/12 hardware rev.F (released end 2001) and later and 9440/22 all hardware rev. If older CPM firmware than x-33 is used or the I/O module firmware is 1-xx (version 2-xx was released June 2003) contact: support.automation@stahl.de for upgrade options.

In general the latest CPM firmware and the latest GSD version should be used (latest mean: V1.xx, V2.xx, V3.xx => were xx has the highest available count)